Skip to main content
Log in

β-d-Xylosidase from Selenomonas ruminantium: Role of Glutamate 186 in Catalysis Revealed by Site-Directed Mutagenesis, Alternate Substrates, and Active-Site Inhibitor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Catalysis and inhibitor binding by the GH43 β-xylosidase are governed by the protonation states of catalytic base (D14, pK a 5.0) and catalytic acid (E186, pK a 7.2). Biphasic inhibition by triethanolamine of E186A preparations reveals minor contamination by wild-type-like enzyme, the contaminant likely originating from translational misreading. Titration of E186A preparations with triethanolamine allows resolution of binding and kinetic parameters of the E186A mutant from those of the contaminant. The E186A mutation abolishes the pK a assigned to E186; mutant enzyme binds only the neutral aminoalcohol \( \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 19\,{\text{mM}}} \right) \), whereas wild-type enzyme binds only the cationic aminoalcohol \( \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 0.065\,{\text{mM}}} \right) \). At pH 7.0 and 25°C, relative kinetic parameter, \( k_{\text{cat}}^{\text{4NPX}}/k_{\text{cat}}^{\text{4NPA}} \), for substrates 4-nitrophenyl-β-d-xylopyranoside (4NPX) and 4-nitrophenyl-α-l-arabinofuranoside (4NPA) of E186A is 100-fold that of wild-type enzyme, consistent with the view that, on the enzyme, protonation is of greater importance to the transition state of 4NPA whereas ring deformation dominates the transition state of 4NPX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Henrissat, B. (1991). Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  2. Henrissat, B., & Davies, G. J. (1997). Current Opinion in Structural Biology, 7, 637–644.

    Article  CAS  Google Scholar 

  3. Davies, G. J., & Sinnott, M. L. (2008). The Biochemical Journal. www.biochemj.org. doi:10.1042/BJ20080382.

  4. Jordan, D. B., Li, X.-L., Dunlap, C. A., Whitehead, T. R., & Cotta, M. A. (2007). Applied Biochemistry and Biotechnology, 141, 51–76.

    Article  CAS  Google Scholar 

  5. Jordan, D. B. (2008). Applied Biochemistry and Biotechnology, 146, 137–149.

    Article  CAS  Google Scholar 

  6. Jordan, D. B., Li, X.-L., Dunlap, C. A., Whitehead, T. R., & Cotta, M. A. (2007). Applied Biochemistry and Biotechnology, 137–140, 93–104.

    Article  Google Scholar 

  7. Jordan, D. B., Dien, B. S., Li, X.-L., & Cotta, M. A. (2006). In Renewable Energy 2006 Committee (Ed.), Proceedings of Renewable Energy 2006 (pp. 1036–1041). Japan: Makuhari Messe.

    Google Scholar 

  8. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  9. Gray, K. A., Zhao, L., & Emptage, M. (2006). Current Opinion in Chemical Biology, 10, 141–146.

    Article  CAS  Google Scholar 

  10. Shallom, D., & Shoham, Y. (2003). Current Opinion in Microbiology, 6, 219–228.

    Article  CAS  Google Scholar 

  11. Jordan, D. B., & Li, X.-L. (2007). Biochimica et Biophysica Acta, 1774, 1192–1198.

    CAS  Google Scholar 

  12. Jordan, D. B., & Braker, J. D. (2007). Archives of Biochemistry and Biophysics, 465, 231–246.

    Article  CAS  Google Scholar 

  13. Whitehead, T. R., & Cotta, M. A. (2001). Current Microbiology, 43, 293–298.

    Article  CAS  Google Scholar 

  14. Brunzelle, J. S., Jordan, D. B., McCaslin, D. R., Olczak, A., & Wawrzak, Z. (2008). Archives of Biochemistry and Biophysics, 474, 157–166.

    Article  CAS  Google Scholar 

  15. Jordan, D. B., & Braker, J. D. (2009). Applied Biochemistry and Biotechnology, 155, 330–346.

    Article  CAS  Google Scholar 

  16. Jordan, D. B., Mertens, J. A., & Braker, J. D. (2009). Biochimica et Biophysica Acta, 1794, 144–158.

    CAS  Google Scholar 

  17. Durette, P. L., & Horton, D. (1971). Advances in Carbohydrate Chemistry and Biochemistry, 26, 49–125.

    Article  CAS  Google Scholar 

  18. Kezdy, F. J., & Bender, M. L. (1962). Biochemistry, 1, 1097–1106.

    Article  CAS  Google Scholar 

  19. Gill, S. C., & von Hippel, P. H. (1989). Analytical Biochemistry, 182, 319–326.

    Article  CAS  Google Scholar 

  20. Leatherbarrow, R. J. (2001). Grafit Version 5. Horley: Erithacus Software Ltd.

    Google Scholar 

  21. Zheng, Y.-J., Basarab, G. S., & Jordan, D. B. (2002). Biochemistry, 41, 820–826.

    Article  CAS  Google Scholar 

  22. Sulzenbacher, G., Driguez, H., Henrissat, B., Scülein, M., & Davies, G. J. (1996). Biochemistry, 35, 15280–15287.

    Article  CAS  Google Scholar 

  23. Tews, I., Perrakis, A., Oppenheim, A., Dauter, Z., Wilson, K. S., & Vorgias, C. E. (1996). Nature Structural & Molecular Biology, 3, 638–648.

    Article  CAS  Google Scholar 

  24. Davies, G. J., Mackenzie, L., Varrot, A., Dauter, M., Brzozowski, A. M., Scülein, M., et al. (1998). Biochemistry, 37, 11707–11713.

    Article  CAS  Google Scholar 

  25. Notenboom, V., Birsan, C., Nitz, M., Rose, D. R., Warren, R. A., & Withers, S. G. (1998). Nature Structural & Molecular Biology, 5, 812–818.

    Article  CAS  Google Scholar 

  26. Sidhu, G., Withers, S. G., Nguyen, N. T., McIntosh, L. P., Ziser, L., & Brayer, G. D. (1999). Biochemistry, 38, 5346–5354.

    Article  CAS  Google Scholar 

  27. Vocadlo, D. J., Davies, G. J., Laine, R., & Withers, S. G. (2001). Nature, 412, 835–838.

    Article  CAS  Google Scholar 

  28. Ducros, V. M.-A., Zechel, D. L., Murshudov, G. N., Gilbert, H. J., Szabó, L., Stoll, D., et al. (2002). Angewandte Chemie. International Edition, 41, 2824–2827.

    Article  CAS  Google Scholar 

  29. Larsson, A. M., Bergfors, T., Dultz, E., Irwin, D. C., Roos, A., Driguez, H., et al. (2005). Biochemistry, 44, 12915–12922.

    Article  CAS  Google Scholar 

  30. Biarnés, X., Nieto, J., Planas, A., & Rovira, C. (2006). Journal of Biological Chemistry, 281, 1432–1441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Brian Jordan.

Additional information

The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, D.B., Braker, J.D. β-d-Xylosidase from Selenomonas ruminantium: Role of Glutamate 186 in Catalysis Revealed by Site-Directed Mutagenesis, Alternate Substrates, and Active-Site Inhibitor. Appl Biochem Biotechnol 161, 395–410 (2010). https://doi.org/10.1007/s12010-009-8874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8874-7

Keywords

Navigation