Skip to main content
Log in

Effect of Biodiesel-derived Raw Glycerol on 1,3-Propanediol Production by Different Microorganisms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial production of 1,3-propanediol (1,3-PD) from raw glycerol, a byproduct of biodiesel production, is economically and environmentally advantageous. Although direct use of raw glycerol without any pretreatment is desirable, previous studies have reported that this could cause inhibition of microbial growth. In this study, we investigated the effects of raw glycerol type, different microorganisms, and pretreatment of raw glycerol on the production of 1,3-PD. Raw glycerol from waste vegetable-oil-based biodiesel production generally caused more inhibition of 1,3-PD production and microbial growth compared to raw glycerol from soybean-oil-based biodiesel production. In addition, two raw glycerol types produced from two biodiesel manufacturers using waste vegetable oil exhibited different 1,3-PD production behavior, partially due to different amounts of methanol included in the raw glycerol from the two biodiesel manufacturers. Klebsiella strains were generally resistant to all types of raw glycerol while the growth of Clostridium strains was variably inhibited depending on the type of raw glycerol. The 1,3-PD production of the Clostridium strains using acid-pretreated raw glycerol was significantly enhanced compared to that with raw glycerol, demonstrating the feasibility of using raw glycerol for 1,3-PD production by various microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asad-ur-Rehman, Saman, W. R. G., Nomura, N., Sato, S., & Matsumura, M. (2008). Journal of Chemical Technology and Biotechnology, 83, 1072–1080.

    Article  CAS  Google Scholar 

  2. Yazdani, S. S., & Gonzalez, R. (2007). Current Opinion in Biotechnology, 18, 213–219.

    Article  CAS  Google Scholar 

  3. Wang, Z., Zhuge, J., Fang, H., & Prior, B. A. (2001). Biotechnology Advances, 19, 201–223.

    Article  CAS  Google Scholar 

  4. Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Biotechnology and Bioengineering, 94, 821–829.

    Article  CAS  Google Scholar 

  5. Lee, P. C., Lee, W. G., Lee, S. Y., & Chang, H. N. (2001). Biotechnology and Bioengineering, 72, 41–48.

    Article  CAS  Google Scholar 

  6. Bories, A., Himmi, E., Jauregui, J., Pelayo-Ortiz, C., & Gonzales, V. (2004). Sciences des Aliments, 24, 121–135.

    Article  CAS  Google Scholar 

  7. Jarvis, G. N., Moore, E. R. B., & Thiele, J. H. (1997). Journal of Applied Microbiology, 83, 166–174.

    Article  CAS  Google Scholar 

  8. Biebl, H. (2001). Journal of Industrial Microbiology and Biotechnology, 27, 18–26.

    Article  CAS  Google Scholar 

  9. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). The Society for Biotechnology, Japan, 100, 260–265.

    CAS  Google Scholar 

  10. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, C., & Soucaille, P. (2003). Proceedings of the National Academy of Sciences, 100, 5010–5015.

    Article  CAS  Google Scholar 

  11. Biebl, H., Marten, S., Hippe, H., & Deckwer, W.-D. (1992). Applied Microbiology and Biotechnology, 36, 592–597.

    Article  CAS  Google Scholar 

  12. Cheng, K.-K., Liu, D.-H., Sun, Y., & Liu, W.-B. (2004). Biotechnology Letters, 26, 911–915.

    Article  CAS  Google Scholar 

  13. Petitdemange, E., Dürr, C., Andaloussi, S. A., & Raval, G. (1995). Journal of Industrial Microbiology and Biotechnology, 15, 498–502.

    Article  CAS  Google Scholar 

  14. Chi, Z., Pyle, D., Wen, Z., Frear, C., & Chen, S. (2007). Process Biochemistry, 42, 1537–1545.

    Article  CAS  Google Scholar 

  15. Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F., & Fick, M. (2000). Journal of Biotechnology, 77, 191–208.

    Article  CAS  Google Scholar 

  16. Chen, C. K., & Blaschek, H. P. (1999). Applied Microbiology and Biotechnology, 52, 170–173.

    Article  CAS  Google Scholar 

  17. Lee, S.-M., Cho, M. O., Park, C. H., Chung, Y.-C., Kim, J. H., Sang, B.-I., et al. (2008). Energy and Fuels, 22, 3459–3464.

    Article  CAS  Google Scholar 

  18. Németh, Á., Kupcsulik, B., & Sevella, B. (2003). World Journal of Microbiology and Biotechnology, 19, 659–663.

    Article  Google Scholar 

  19. Asad-ur-Rehman, Matsumura, M., Nomura, N., & Sato, S. (2008). Current Research in Bacteriology, 1, 7–16.

    Article  CAS  Google Scholar 

  20. Jerzykiewicz, M., Cwielag, I., & Jerzykiewicz, W. (2009). Journal of Chemical Technology and Biotechnology, 84, 1196–1201.

    Article  CAS  Google Scholar 

  21. Homann, T., Tag, C., Biebl, H., Deckwer, W. D., & Schink, B. (1990). Applied Microbiology and Biotechnology, 33, 121–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Korea Ministry of Knowledge Economy (MKE) through the Energy Technology Innovation Project (ETI) and the Korean Research Foundation through the Korea-China Science and Technology Cooperation Center Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsoon Um.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, C., Ahn, JH., Kim, S.W. et al. Effect of Biodiesel-derived Raw Glycerol on 1,3-Propanediol Production by Different Microorganisms. Appl Biochem Biotechnol 161, 502–510 (2010). https://doi.org/10.1007/s12010-009-8859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8859-6

Keywords

Navigation