Skip to main content
Log in

Pentavalent Arsenate Reductase Activity in Cytosolic Fractions of Pseudomonas sp., Isolated from Arsenic-Contaminated Sites of Tezpur, Assam

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pentavalent arsenate reductase activity was localized and characterized in vitro in the cytosolic fraction of a newly isolated bacterial strain from arsenic-contaminated sites. The bacterium was gram negative, rod-shaped, nonmotile, non-spore-forming, and noncapsulated, and the strain was identified as Pseudomonas sp. DRBS1 following biochemical and molecular approaches. The strain Pseudomonas sp. DRBS1 exhibited enzymatic machinery for reduction of arsenate(V) to arsenite(III). The suspended culture of the bacterium reduced more than 97% of As(V) (40–100 mM) to As(III) in 48 h. The growth rate and total cellular yield decreased in the presence of higher concentration of arsenate. The suspended culture repeatedly reduced 10 mM As(V) within 5 h up to five consecutive inputs. The cell-free extracts reduced 86% of 100 µM As(V) in 40 min. The specific activity of arsenate reductase enzyme in the presence of 100 µM arsenate is 6.68 µmol/min per milligram protein. The arsenate reductase activity is maximum at 30 °C and at pH 5.2. The arsenate reductase activity increased in the presence of electron donors like citrate, glucose, and galactose and metal ions like Cd+2, Cu+2, Ca+2, and Fe+2. Selenate as an electron donor also supports the growth of strain DRBS1 and significantly increased the arsenate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tamaki, S., & Frankenberger, W. T. (1992). Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, 124, 79–110.

    CAS  Google Scholar 

  2. Cullen, R. W., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  3. Nriagu, J. O. (1990). Global metal pollution. Environment, 32(7–11), 28–33.

    Google Scholar 

  4. National Research Council. (1977). Arsenic. Washington, DC: National Academy of Sciences.

    Google Scholar 

  5. Jackson, C. R., Jackson, E. F., Dugas, S. L., Gamble, K., & Williams, S. E. (2003). Microbial transformations of arsenite and arsenate in natural environments. Recent Research Developments in Microbiology, 7, 103–118.

    CAS  Google Scholar 

  6. Clausen, C. A. (2000). Isolating metal-tolerant bacteria capable of removing copper, chromium and arsenic from treated wood. Waste Management Research, 18, 264–268.

    CAS  Google Scholar 

  7. Cervantes, C., Ji, G., Ramirez, J. L., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15, 355–367.

    Article  CAS  Google Scholar 

  8. Dowdle, P. R., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic (V) to arsenic (III) in anoxic sediments. Applied and Environmental Microbiology, 62, 1664–1669.

    CAS  Google Scholar 

  9. Oremland, R. S., & Stoltz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.

    Article  CAS  Google Scholar 

  10. Silver, S. (1998). Genes for all metals—a bacterial view of the periodic table. Journal of Industrial Microbiology & Biotechnology, 20, 1–12.

    Article  CAS  Google Scholar 

  11. Xu, C., Zhou, T., Kuroda, M., & Rosen, B. P. (1998). Metalloid resistance mechanisms in prokaryotes. Journal of Biochemistry, 123, 16–23.

    CAS  Google Scholar 

  12. Patel, P. C., Goulhen, F., Boothman, C., Gault, A. G., et al. (2007). Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Archives of Microbiology, 187(3), 171–183.

    Article  CAS  Google Scholar 

  13. Mateos, L. M., Ordonez, E., Letek, M., & Gil, J. A. (2006). Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. International Microbiology, 9, 207–215.

    CAS  Google Scholar 

  14. Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters, 529, 86–92.

    Article  CAS  Google Scholar 

  15. Mok, M. W., & Wai, C. M. (1994). Mobilization of arsenic in contaminated river waters. In J. O. Nriagu (Ed.), Arsenic in the environment. Part I: cycling and characterization. New York: Wiley.

    Google Scholar 

  16. Garcia-Manyes, S., Jimenez, G., Padro, A., Rubio, R., & Rauret, G. (2002). Arsenic speciation in contaminated soils. Talanta, 58, 97–109.

    Article  CAS  Google Scholar 

  17. Bissen, M., & Frimmet, H. F. (2000). Speciation of As (III), As (V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS. Fresenius’ Journal of Analytical Chemistry, 367, 51–55.

    Article  CAS  Google Scholar 

  18. Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8, 285–289.

    Article  CAS  Google Scholar 

  19. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., et al. (1997). Current protocols in molecular biology, unit 24. New York: Wiley.

    Google Scholar 

  20. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  21. Xia, X., & Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity, 92, 371–373.

    Article  CAS  Google Scholar 

  22. Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.

    Article  CAS  Google Scholar 

  23. Johnson, D. L., & Pilson, M. E. Q. (1972). Spectrophotometric determination of arsenite, arsenate and phosphate in natural waters. Analytica Chimica Acta, 58, 289–299.

    Article  CAS  Google Scholar 

  24. Pirt, S. J. (1975). Principles of microbe and cell cultivation. Oxford: Blackwell.

    Google Scholar 

  25. Lowry, O. H., Rosenberg, N. J., Farr, A. L., & Randall, R. J. (1951). Estimation of protein by Lowry’s method. Journal of Biological Chemistry, 193, 265.

    CAS  Google Scholar 

  26. Anderson, C. R., & Cook, G. M. (2004). Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites of New Zealand. Current Microbiology, 48, 341–347.

    Article  CAS  Google Scholar 

  27. Jackson, C. R., Harrison, K. G., & Dugas, S. L. (2005). Enumeration and characterization of culturable arsenate resistant bacteria in a large estuary. Systematic and Applied Microbiology, 28, 727–734.

    Article  CAS  Google Scholar 

  28. Turner, A. W. (1954). Bacterial oxidation of arsenite. Description of bacteria isolated from arsenical cattle-dipping fluids. Australian Journal of Biological Sciences, 7, 452–478.

    CAS  Google Scholar 

  29. Abdrashitova, S. A., Mynbaeva, B. N., & Ilyaletdinov, A. N. (1981). Oxidation of arsenic by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus. Mikrobiologiya, 50, 41–45.

    CAS  Google Scholar 

  30. Macur, R. E., Jackson, C. R., Botero, L. M., McDermott, T. R., & Inskeep, W. P. (2004). Bacteria populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science and Technology, 38, 104–111.

    Article  CAS  Google Scholar 

  31. Ilyaletdinov, A. N., & Abdrashitova, S. A. (1981). Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya, 50, 197–204.

    CAS  Google Scholar 

  32. Joshi, D. N., Patel, J. S., Flora, S. J. S., & Kalia, K. (2008). Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environmental Health and Preventive Medicine, 13(5), 257–263.

    Article  CAS  Google Scholar 

  33. Rathinasabapathi, B., Raman, S. B., Kerthlis, G., & Ma, L. (2006). Arsenic resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vita L.) reduces arsenate to arsenite. Canadian Journal of Microbiology, 52(7), 695–700.

    Article  CAS  Google Scholar 

  34. Salam, M. A., Hossain, M. S., Ali, M. E., Asad, M. A., & Ali, M. H. (2009). Isolation and characterization of arsenic resistant bacteria from different environment in South-West region of Bangladesh. Research Journal of Environment Science, 3(1), 110–115.

    Article  Google Scholar 

  35. Drewniak, L., Styczek, A., Majder-Lopatka, M., & Sklodowska, A. (2008). Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environmental Pollution, 156, 1069–1074.

    Article  CAS  Google Scholar 

  36. Drewniak, L., Styczek, A., & Sklodowska, A. (2007). Arsenic hypertolerant bacteria isolated from gold mine rocks biofilms. Advanced Materials Research, 576, 20–21.

    Google Scholar 

  37. Matlakowska, R., Hallberg, K. B., & Sklodowska, A. (2007). Isolation and characterization of microorganisms from copper bearing black shale of Lubin copper mine (Poland). Advanced Materials Research, 580, 20–21.

    Google Scholar 

  38. Matlakowska, R., Drewniak, L., & Sklodowska, A. (2008). Arsenic-hypertolerant pseudomonads isolated from ancient gold and copper-bearing black shale deposits. Geomicrobiology Journal, 25, 357–362.

    Article  CAS  Google Scholar 

  39. Yamamura, S., Ike, M., & Fujita, M. (2003). Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. Strain SF-1. Journal of Bioscience and Bioengineering, 96(5), 454–460.

    CAS  Google Scholar 

  40. Fujita, M., Ike, M., Nishimoto, S., Takahashi, K., & Kashiwa, M. (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83, 517–522.

    Article  CAS  Google Scholar 

  41. Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J. F., & Oremland, R. S. (1998). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Archives of Microbiology, 171, 19–30.

    Article  CAS  Google Scholar 

  42. Stolz, J. F., Ellis, D. J., Switzer Blum, J., Ahmann, D., Lovley, D. R., & Oremland, R. S. (1999). Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. International Journal of Systematic Bacteriology, 49, 1177–1180.

    Article  CAS  Google Scholar 

  43. Switzer Blum, J., Stolz, J. F., Oren, A., & Oremland, R. S. (2001). Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from deep sea sediments that respires selenate. Archives of Microbiology, 175, 208–219.

    Article  Google Scholar 

  44. von Wintzingerode, F., Gobel, U. B., Siddiqui, R. A., Rosick, U., Schumann, P., Fruhling, A., et al. (2001). Salana multivorans gen. nov., sp. nov., a novel actinobacterium isolated from an anaerobic bioreactor and capable of selenate reduction. International Journal of Systematic and Evolutionary Microbiology, 51, 1653–1661.

    Google Scholar 

  45. Zhang, Y., Siddique, T., Wang, J., & Frankenberger, W. T., Jr. (2004). Selenate reduction in river water by Citrobacter freundii isolated from a selenium-contaminated sediment. Journal of Agricultural and Food Chemistry, 52, 1594–1600.

    Article  CAS  Google Scholar 

  46. Prithiviraj Singh, S., Mishra, S. K., & Mahadevan, A. (2001). Functional analysis of chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Molecular Biology Reports, 28(2), 63–72.

    Article  CAS  Google Scholar 

  47. Sizova, O. I., Kochetkov, V. V., & Boronin, A. M. (2006). The arsenic-phytoremediation potential of genetically modified Pseudomonas sp. In J. L. Morel, G. Echevarria & N. Goncharova (Eds.), Phytoremediation of metal contaminated soil (Vol. 68, pp. 327–334). Heidelberg: Springer.

    Chapter  Google Scholar 

  48. Nemeti, B., & Gregus, Z. (2002). Reduction of arsenate to arsenite in hepatic cytosol. Toxicological Sciences, 70, 4–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, D., Madamwar, D. & Subramanian, R.B. Pentavalent Arsenate Reductase Activity in Cytosolic Fractions of Pseudomonas sp., Isolated from Arsenic-Contaminated Sites of Tezpur, Assam. Appl Biochem Biotechnol 162, 766–779 (2010). https://doi.org/10.1007/s12010-009-8852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8852-0

Keywords

Navigation