Skip to main content
Log in

Simulated Microgravity Affects Growth of Escherichia coli and Recombinant β-d-Glucuronidase Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Effects of simulated microgravity (SMG) on bacteria have been studied in various aspects. However, few reports are available about production of recombinant protein expressed by bacteria in SMG. In this study growth of E. coli BL21 (DE3) cells transformed with pET-28a (+)-pgus in double-axis clinostat that could model low shear SMG environment and the recombinant β-d-glucuronidase (PGUS) expression have been investigated. Results showed that the cell dry weights in SMG were 16.47%, 38.06%, and 28.79% more than normal gravity (NG) control, and the efficiency of the recombinant PGUS expression in SMG were 18.33%, 19.36%, and 33.42% higher than that in NG at 19 °C, 28 °C, and 37 °C, respectively (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbiology and Molecular Biology Reviews, 68, 365–361.

    Article  Google Scholar 

  2. Hammond, T. G., Lewis, F. C., Goodwin, T. J., Linnehan, R. M., Wolf, D. A., Hire, K. P., et al. (1999). Nature Medicine, 5, 359.

    Article  CAS  Google Scholar 

  3. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., LeBlanc, C. L., Bentrup, K. H. Z., et al. (2003). Journal of Microbiological Methods, 54, 1–11.

    Article  CAS  Google Scholar 

  4. Baker, P. W., Meyer, M. L., & Leff, L. G. (2004). Microgravity Science and Technology, 15, 39–44.

    Article  Google Scholar 

  5. Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Letters in Applied Microbiology, 31, 39–41.

    Article  CAS  Google Scholar 

  6. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Applied and Environmental Microbiology, 63, 4090–4092.

    CAS  Google Scholar 

  7. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Current Microbiology, 34, 199–204.

    Article  CAS  Google Scholar 

  8. Demain, A. L., & Fang, A. (2001). The Chemical Record, 1, 333–346.

    Article  CAS  Google Scholar 

  9. Brown, R. B., Klaus, D., & Todd, P. (2002). Microgravity Science and Technology, 13, 24–29.

    Article  Google Scholar 

  10. Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., & Todd, P. (1999). Applied Microbiology and Biotechnology, 51, 229–234.

    Article  CAS  Google Scholar 

  11. Khoo, S. H. G., & Al-Rubeai, M. (2009). Biotechnology and Bioengineering, 102, 188–199.

    Article  CAS  Google Scholar 

  12. Saarinen, M. A., & Murhammer, D. W. (2000). In Vitro Cellular & Developmental Biology-Animal, 36, 362–366.

    Article  CAS  Google Scholar 

  13. Feng, S. J., Li, C., Li, H., & Wang, X. Y. (2007). Journal of Chemical Engineering of Chinese Universities, 21, 977–982.

    CAS  Google Scholar 

  14. Matsui, S., Matsumoto, H., Sonoda, Y., Ando, K., Aizu-Yokota, E., Sato, T., et al. (2004). International Immunopharmacology, 4, 1633–1644.

    Article  CAS  Google Scholar 

  15. Schwarz, R. P., Wolf, D. A., & Trinh, T. (1991). Rotating cell culture vessel. U.S. patent 5,026,650.

  16. Hammond, T. G., & Hammond, J. M. (2001). American Journal of Physiology-Renal Physiology, 281, F12–F25.

    CAS  Google Scholar 

  17. Claeys, E., Uytterhaegen, L., Buts, B., & Demeyer, D. (1995). Meat Science, 39, 177–193.

    Article  CAS  Google Scholar 

  18. Navran, S. (2007). Cell technology for cell products, 567–569.

  19. Benoit, M. R., & Klaus, D. M. (2007). Advances in Space Research, 39, 1225–1232.

    Article  Google Scholar 

  20. Klaus, D., Simske, S., Todd, P., & Stodieck, L. (1997). Microbiology, 143, 449–455.

    Article  CAS  Google Scholar 

  21. Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Applied Microbiology and Biotechnology, 54, 33–36.

    Article  CAS  Google Scholar 

  22. Fang, A., Pierson, D. L., & Mishra, S. K. (1997). Journal of Industrial Microbiology and Biotechnology, 18, 22–25.

    Article  CAS  Google Scholar 

  23. Tucker, D. L., Ott, C. M., Huff, S., Fofanov, Y., Pierson, D. L., Willson, R. C., et al. (2007). BMC Microbiology, 7, 1–16.

    Article  Google Scholar 

  24. Sheehan, K. B., McInnerney, K., Purevdorj-Gage, B., Altenburg, S. D., & Hyman, L. E. (2007). BMC Genomics, 8, 1–12.

    Article  Google Scholar 

  25. Johanson, K., Allen, P. L., Lewis, F., Cubano, L. A., Hyman, L. E., & Hammond, T. G. (2002). Journal of Applied Physiology, 93, 2171–2180.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National “863” High-Tech Project (2008AA12A218-2), Natural Science Foundation of China (20776017), and the Natural Science Foundation of Beijing (5072028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Li.

Additional information

L. Xiang and F. Qi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, L., Qi, F., Dai, D. et al. Simulated Microgravity Affects Growth of Escherichia coli and Recombinant β-d-Glucuronidase Production. Appl Biochem Biotechnol 162, 654–661 (2010). https://doi.org/10.1007/s12010-009-8836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8836-0

Keywords

Navigation