Skip to main content
Log in

Thermodynamics and Kinetics of Heat Inactivation of a Novel Keratinase from Chryseobacterium sp. Strain kr6

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel keratinase from Chryseobacterium sp. strain kr6 was purified to homogeneity by (NH4)2SO4 precipitation, gel permeation on Sephadex G-100, and Q-Sepharose Fast Flow anion-exchange chromatography. The molecular weight of the purified enzyme was around 20 kDa. Kinetic and thermodynamic parameters for thermal inactivation were determined. The influence of Ca2+ and Mg2+ ions and purification degree on the enzyme stability was evaluated in the range of 50 to 60 °C. The results showed that first-order kinetics explained well the thermal denaturation of the keratinase in this temperature interval. The presence of Ca2+ increases significantly the enzyme stability. Compared with the controls, the half-life of the purified enzyme after two purification steps in the presence of Ca2+ increased 7.3, 20.2, and 9.8 fold at 50, 55, and 60 °C, respectively. Thermodynamics parameters for thermal inactivation were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C 0 :

Activity at time t = 0

C t :

Activity at time t

k d :

First-order rate constant (min−1)

E a,d :

Activation energy for denaturation (kJ mol−1)

ΔG #d :

Free energy (kJ mol−1)

ΔH #d :

Activation enthalpy (kJ mol−1)

ΔS #d :

Activation entropy (J mol−1 K−1)

H :

Planck constant (J s)

K B :

Boltzmann constant (J K−1)

R :

Universal gas constant (J mol−1 K−1)

r 2 :

Determination coefficient

t :

Time (min)

t 1/2 :

Half-life time (min)

T :

Temperature (K)

References

  1. Brandelli, A. (2008). Food and Bioprocess Technology, 1, 105–116.

    Article  Google Scholar 

  2. Gupta, R. & Ramnani, P. (2006). Applied Microbiology and Biotechnology, 70, 21–33.

    Article  CAS  Google Scholar 

  3. Bressollier, P., Letourneau, F., Urdaci, M., & Verneuil, B. (1999). Applied and Environmental Microbiology, 65, 2570–2576.

    CAS  Google Scholar 

  4. Thys, R. C. S. & Brandelli, A. (2006). Journal of Applied Microbiology, 101, 1259–1268.

    Article  CAS  Google Scholar 

  5. Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmi Priya, T., & Annadurai, G. (2005). Enzyme and Microbial Technology, 36, 639–647.

    Article  CAS  Google Scholar 

  6. Bernal, C., Cairó, J., & Coello, N. (2006). Enzyme and Microbial Technology, 38, 49–54.

    Article  CAS  Google Scholar 

  7. Minagawa, H. & Kaneko, H. (2000). Biotechnological Letters, 22, 1131–1133.

    Article  CAS  Google Scholar 

  8. Sellek, G. A. & Chaudhuri, J. B. (1999). Enzyme and Microbial Technology, 25, 471–482.

    Article  CAS  Google Scholar 

  9. He, Z., Zhang, Z., & He, M. (2000). Process Biochemistry, 35, 1235–1240.

    Article  CAS  Google Scholar 

  10. Joo, H. S., Koo, Y. M., Choi, J. W., & Chang, C. S. (2005). Enzyme and Microbial Technology, 36, 766–772.

    Article  CAS  Google Scholar 

  11. Beg, Q. K. & Gupta, R. (2003). Enzyme and Microbial Technology, 32, 294–304.

    Article  CAS  Google Scholar 

  12. Bhosale, S. H., Rao, M. B., Deshpande, V. V., & Srinivasan, M. C. (1995). Enzyme and Microbial Technology, 17, 136–139.

    Article  CAS  Google Scholar 

  13. Ghorbel, B., Sellami-Kamoun, A., & Nasri, M. (2003). Enzyme and Microbial Technology, 32, 513–518.

    Article  CAS  Google Scholar 

  14. Riffel, A., Lucas, F. S., Heeb, P., & Brandelli, A. (2003). Archives of Microbiology, 179, 258–265.

    CAS  Google Scholar 

  15. Riffel, A., Brandelli, A., Bellato, C. M., Souza, G. H. M. F., Eberlin, M. N., & Tavares, F. C. A. (2007). Journal of Biotechnology, 128, 693–703.

    Article  CAS  Google Scholar 

  16. Thys, R. C. S., Lucas, F. S., Riffel, A., Heeb, P., & Brandelli, A. (2004). Letters in Applied Microbiology, 39, 181–186.

    Article  CAS  Google Scholar 

  17. Lin, X., Lee, C. G., Casale, E. S., & Shih, J. C. H. (1992). Applied Biochemistry and Biotechnology, 58, 3271–3275.

    CAS  Google Scholar 

  18. Lowry, O. H., Rosembrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 267–275.

    Google Scholar 

  19. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Switzer, R. C., Merill, C. R., & Shifrin, S. A. (1979). Analytical Biochemistry, 98, 231–237.

    Article  CAS  Google Scholar 

  21. Murphy, A. & Fagain, C. O. (1996). Journal of Biotechnology, 49, 163–171.

    Article  CAS  Google Scholar 

  22. Schokker, E. P. & Boekel, M. A. J. S. (1999). Journal of Agricultural and Food Chemistry, 47, 1681–1686.

    Article  CAS  Google Scholar 

  23. Patel, T. R., Jackman, D. M., Williams, G. I., & Bartlett, F. M. J. (1986). Food Protection, 49, 183–188.

    CAS  Google Scholar 

  24. Veltman, O. R., Vriend, G., Berendsen, H. J., van den Burg, B., Venema, G., & Enjsink, V. G. (1998). Biochemistry, 37, 5312–5319.

    Article  CAS  Google Scholar 

  25. Durham, D. R., Stewart, D. B., & Stellwag, E. J. (1987). Journal of Bacteriology, 169, 2762–2768.

    CAS  Google Scholar 

  26. Singh, J., Vohra, R. M., & Sahoo, D. K. (2001). Journal of Industrial Microbiology and Biotechnology, 26, 387–393.

    Article  CAS  Google Scholar 

  27. Rashid, M. H. & Siddiqui, K. S. (1998). Process Biochemistry, 33, 109–115.

    Article  CAS  Google Scholar 

  28. Xiong, Y. H., Liu, J. Z., Song, H. Y., & Ji, L. N. (2005). Journal of Biotechnology, 119, 348–356.

    Article  CAS  Google Scholar 

  29. Longo, M. A. & Combes, D. (1999). Journal of Chemical Technology and Biotechnology, 74, 25–32.

    Article  CAS  Google Scholar 

  30. Cobos, A. & Estrada, P. (2003). Enzyme and Microbial Technology, 33, 810–818.

    Article  CAS  Google Scholar 

  31. Uplaksh, V. K., Mathur, D. K., & Malik, R. K. (1994). Journal of Applied Bacteriology, 76, 356–360.

    Google Scholar 

  32. Vicente, J. I., Arriaga, D., Del Valle, P., Soler, J., & Eslava, A. P. (1996). Fungal Genetics and Biology, 20, 115–124.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES and CNPq (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, S.T., Casarin, F., Gemelli, S. et al. Thermodynamics and Kinetics of Heat Inactivation of a Novel Keratinase from Chryseobacterium sp. Strain kr6. Appl Biochem Biotechnol 162, 548–560 (2010). https://doi.org/10.1007/s12010-009-8835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8835-1

Keywords

Navigation