Skip to main content
Log in

Characterisation of Specific Activities and Hydrolytic Properties of Cell-Wall-Degrading Enzymes Produced by Trichoderma reesei Rut C30 on Different Carbon Sources

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Conversion of lignocellulosic substrates is limited by several factors, in terms of both the enzymes and the substrates. Better understanding of the hydrolysis mechanisms and the factors determining their performance is crucial for commercial lignocelluloses-based processes. Enzymes produced on various carbon sources (Solka Floc 200, lactose and steam-pre-treated corn stover) by Trichoderma reesei Rut C30 were characterised by their enzyme profile and hydrolytic performance. The results showed that there was a clear correlation between the secreted amount of xylanase and mannanase enzymes and that their production was induced by the presence of xylan in the carbon source. Co-secretion of α-arabinosidase and α-galactosidase was also observed. Secretion of β-glucosidase was found to be clearly dependent on the composition of the carbon source, and in the case of lactose, 2-fold higher specific activity was observed compared to Solka Floc and steam-pre-treated corn stover. Hydrolysis experiments showed a clear connection between glucan and xylan conversion and highlighted the importance of β-glucosidase and xylanase activities. When hydrolysis was performed using additional purified β-glucosidase and xylanase, the addition of β-glucosidase was found to significantly improve both the xylan and glucan conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Juhász, T., Szengyel, Z., Szijártó, N., & Réczey, K. (2004). Applied Biochemistry and Biotechnology, 113, 201–211.

    Article  Google Scholar 

  2. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  3. Juhász, T., Szengyel, Z., Réczey, K., Siika-aho, M., & Viikari, L. (2005). Process Biochemistry, 40, 3519–3525.

    Article  Google Scholar 

  4. Ramos, L. P. (2003). Quimica Nova, 26, 863–871.

    CAS  Google Scholar 

  5. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, S., Stenberg, K., Szengyel, Z., et al. (1996). Bioresource Technology, 58, 171–179.

    Article  CAS  Google Scholar 

  6. Kuhls, K., Lieckfeldt, E., Samuels, G. J., Kovacs, W., Meyer, W., Petrini, O., et al. (1996). Proceedings of the National Academy of Sciences of the United States of America, 93, 7755–7760.

    Article  CAS  Google Scholar 

  7. Selig, M. J., Knoshaug, E. P., Adney, W. S., Himmel, M. E., & Decker, S. R. (2007). Bioresource Technology, 99, 4997–5005.

    Article  Google Scholar 

  8. Wilson, C. A., McCrae, S. I., & Wood, T. M. (1994). Journal of Biotechnology, 37, 217–227.

    Article  CAS  Google Scholar 

  9. Sørensen, H. R., Pedersen, S., & Meyer, A. S. (2007). Enzyme and Microbial TechnologyEnzyme Microb Technol, 40, 908–918.

    Article  Google Scholar 

  10. Warzywoda, M., Larbra, E., & Pourquié, J. (1992). Bioresource Technology, 39, 125–130.

    Article  CAS  Google Scholar 

  11. Sternberg, D., & Mandels, G. R. (1979). Journal of Bacteriology, 139, 761–769.

    CAS  Google Scholar 

  12. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  13. Réczey, K., Szengyel, Z., Eklund, R., & Zacchi, G. (1996). Bioresource Technology, 57, 25–30.

    Article  Google Scholar 

  14. Olsson, L., Christensen, T. M. I. E., Hansen, K., & Palmquist, E. A. (2003). Enzyme and Microbial Technology, 33, 612–619.

    Article  CAS  Google Scholar 

  15. Margolles-Clark, E., Ilmén, M., & Pentillä, M. (1997). Journal of Biotechnology, 57, 167–179.

    Article  CAS  Google Scholar 

  16. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  17. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., et al. (2005). Enzyme and Microbial Technology, 37, 175–184.

    Article  CAS  Google Scholar 

  18. Tabaka, M. G., Herpoël-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzyme and Microbial Technology, 39, 897–902.

    Article  Google Scholar 

  19. Wood, T. M. (1997). Methods in Enzymology, 160, 19–25.

    Article  Google Scholar 

  20. Sluiter, A. (2006). Determination of structural carbohydrates and lignin in biomass, laboratory analytical protocol. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  21. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–414.

    Article  CAS  Google Scholar 

  22. Juhász, T., Egyházi, A., & Réczey, K. (2005). Applied Biochemistry and Biotechnology, 121–124, 243–254.

    Article  Google Scholar 

  23. Tenkanen, M., Puls, J., & Poutanen, K. (1992). Enzyme and Microbial Technology, 14, 566–574.

    Article  CAS  Google Scholar 

  24. Suurnäkki, A., Tenkanen, M., Siika-aho, M., Niku-Paavola, M.-L., Viikari, L., & Buchert, J. (2000). Cellulose, 7, 189–209.

    Article  Google Scholar 

  25. Bernfeld, P. (1955). In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (pp. 149–158). New York: Academic.

    Chapter  Google Scholar 

  26. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  27. Bailey, M. J., & Nevalainen, K. M. H. (1981). Enzyme and Microbial Technology, 3, 153–157.

    Article  CAS  Google Scholar 

  28. van Tilbeurgh, H., Clayssens, M., & de Bruyne, C. K. (1982). FEBS Letters, 149, 152–156.

    Article  Google Scholar 

  29. van Tilbeurgh, H., Loontiens, F. G., de Bruyne, C. K., & Clayssens, M. (1988). Methods in Enzymology, 160, 45–59.

    Article  Google Scholar 

  30. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  31. Stålbrand, H., Siika-Aho, M., Tenkanen, M., & Viikari, L. (1993). Journal of Biotechnology, 29, 229–242.

    Article  Google Scholar 

  32. Benkő, Z., Siika-aho, M., Viikari, L., & Réczey, K. (2008). Enzyme and Microbial Technology, 43, 109–114.

    Article  Google Scholar 

  33. Poutanen, K., Rättö, M., Puls, J., & Viikari, L. (1987). Journal of Biotechnology, 6, 49–60.

    Article  CAS  Google Scholar 

  34. Poutanen, K., & Puls, J. (1988). Applied Microbiology and Biotechnology, 28, 425–432.

    Article  CAS  Google Scholar 

  35. Bailey, M., & Linko, M. (1990). Journal of Biotechnology, 16, 57–66.

    Article  CAS  Google Scholar 

  36. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  37. Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Electrophoresis, 9, 255–262.

    Article  CAS  Google Scholar 

  38. Benkő, Z., Drahos, E., Szengyel, Z., Puranen, T., Vehmaanperä, J., & Réczey, K. (2007). Applied Biochemistry and Biotechnology, 136–140, 195–204.

    Article  Google Scholar 

  39. Martinez, D., et al. (2008). Nature Biotechnology, 26, 553–560.

    Article  CAS  Google Scholar 

  40. Seiboth, B., Pakdaman, B. S., Hartl, L., & Kubicek, C. P. (2007). Fungal Biological Reviews, 21, 42–48.

    Article  Google Scholar 

  41. Karaffa, L., Fekete, E., Gamauf, C., Szentirmai, A., Kubicek, C. P., & Seiboth, B. (2006). Microbiology, 152, 1507–1514.

    Article  CAS  Google Scholar 

  42. Öhgren, K., Galbe, M., & Zacchi, G. (2005). Applied Biochemistry and Biotechnology, 124, 1055–1068.

    Article  Google Scholar 

  43. Hermann, M. C., Vrsanska, M., Jurickova, M., Hirsch, J., Biely, P., & Kubicek, C. P. (1997). Biochemical Journal, 321, 375–381.

    Google Scholar 

  44. Tenkanen, M., Luonter, E., & Teleman, A. (1996). FEBS Letters, 399, 303–306.

    Article  CAS  Google Scholar 

  45. Szengyel, Z., Zacchi, G., Varga, A., & Réczey, K. (2000). Applied Biochemistry and Biotechnology, 84–86, 679–691.

    Article  Google Scholar 

  46. Leggioa, L. L., & Pickersgill, R. W. (1999). Enzyme and Microbial Technology, 25, 701–709.

    Article  Google Scholar 

Download references

Acknowledgements

The European Cooperation in the field of Scientific and Technical Research (COST Action FP0602. Biotechnology for Lignocellulose Biorefineries) is acknowledged for mobility support. The Hungarian National Research Fund (OTKA – K 72710) is kindly acknowledged for financial support. Celluclast 1.5L and Novozym 188 were kindly donated by Novozymes A/S (Bagsvaerd. Denmark). Steam-pre-treated corn stover and steam-pre-treated spruce were received from ENEA, Italy and Lund University, Sweden, respectively. Ulla Vornamo is gratefully acknowledged for her help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Sipos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, B., Benkő, Z., Dienes, D. et al. Characterisation of Specific Activities and Hydrolytic Properties of Cell-Wall-Degrading Enzymes Produced by Trichoderma reesei Rut C30 on Different Carbon Sources. Appl Biochem Biotechnol 161, 347–364 (2010). https://doi.org/10.1007/s12010-009-8824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8824-4

Keywords

Navigation