Skip to main content
Log in

Screening and Production Study of Microbial Xylanase Producers from Brazilian Cerrado

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by β-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 °C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0–5.5. They were stable in the pH range 5.0–10.0 and 5.5–8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 °C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sánches, C. (2009). Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  2. Pérez, J., Muñoz-Dorado, J., De-La-Rubi, T., & Martinez, J. (2002). International Microbiology, 5, 53–63.

    Article  Google Scholar 

  3. Jeffries, T. W. (1994). Biodegradetion of liginin and hemicelluloses. In C. Ratledge (Ed.), Biochemistry of microbial degradation (pp. 233–277). Dodrecht: Kluwer.

    Google Scholar 

  4. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  5. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80.

    Article  CAS  Google Scholar 

  6. Rajaram, S., & Varma, A. (1990). Applied Microbiology and Biotechnology, 34, 141–144.

    Article  CAS  Google Scholar 

  7. Ferreira-Filho, E. X. (2004). in Enzimas como agentes Biológicos (pp. 137–148). Ribeirão Preto: Legis Summa.

    Google Scholar 

  8. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  9. Da Silva, R., Lago, E. S., Merheb, C. W., Macchione, M. M., Park, Y. K., & Gomes, E. (2005). Brazilian Journal of Microbiology, 36, 235–241.

    Google Scholar 

  10. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  11. Dhillon, A., Gupta, J. K., Jauhari, B. M., & Khanna, S. A. (2000). Bioresource Technology, 73, 273–277.

    Article  CAS  Google Scholar 

  12. Rani, D. S., & Nand, K. (2000). Process Biochemistry, 36, 355–362.

    Article  CAS  Google Scholar 

  13. Shah, A. R., & Madamwar, D. (2005). Process Biochemistry, 40, 1763–1771.

    Article  CAS  Google Scholar 

  14. Liu, W., Zhu, W., Lu, Y., Kong, J., & Ma, G. (1998). Process Biochemistry, 33, 331–336.

    Article  CAS  Google Scholar 

  15. Li, Y., Liu, Z., Cui, F., Ping, L., Qiu, C., Li, G., et al. (2009). Applied Biochemistry and Biotechnology, 157, 36–49.

    Article  CAS  Google Scholar 

  16. Latif, F., Asgher, M., Saleem, R., Akrem, A., & Legge, R. L. (2006). World Journal of Microbiology and Biotechnology, 22, 45–50.

    Article  CAS  Google Scholar 

  17. Kadowaki, M. K., Souza, C. G. M., Simão, R. C. G., & Peralta, R. M. (1997). Applied Biochemistry and Biotechnology, 66, 97–106.

    Article  CAS  Google Scholar 

  18. Milagres, A. M. F., Santos, E., Piovan, T., & Roberto, I. C. (2004). Process Biochemistry, 39, 1387–1391.

    Article  CAS  Google Scholar 

  19. Rezende, M. I., Barbosa, A. M., Vasconcelos, A. F. D., & Endo, A. S. (2002). Brazilian Journal of Microbiology, 33, 67–72.

    Article  CAS  Google Scholar 

  20. Virupakshi, S., Babu, K. G., Gaikwad, S. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435.

    Article  CAS  Google Scholar 

  21. Damiano, V. B., Ward, R., Gomes, E., Alves-Prado, H. F., & DaSilva, R. (2006). Applied Biochemistry and Biotechnology, 129–132, 289–302.

    Article  Google Scholar 

  22. Da Silva, M., Passarini, M. R. Z., Bonugli, R. C., & Sette, L. D. (2008). Environmental Technology, 29, 1331–1339.

    Article  Google Scholar 

  23. Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Letters in Applied Microbiology, 8, 151–156.

    Article  CAS  Google Scholar 

  24. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). in PCR Protocols: a Guide to Methods and Applications (pp. 315–322). New York: Academic Press, Inc.

    Google Scholar 

  25. Lane, D. J. (1991). Nucleic Acid Techniques in Bacterial Systematics (pp. 115–175). Chinchester: Willey.

    Google Scholar 

  26. Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. H. (1997). Applied Environmental Microbiology, 63, 3233–3241.

    CAS  Google Scholar 

  27. Sette, L. D., Passarini, M. R. Z., Delamerlina, C., Salati, F., & Duarte, M. C. T. (2006). World Journal of Microbiology and Biotechnology, 22, 1185–1195.

    Article  CAS  Google Scholar 

  28. Vasconcellos, S. P., Crespim, E., Cruz, G. F., Simioni, K. C. M., Santos Neto, E. V., Marsaioli, A. J., et al. (2009). Organic Geochemistry, 40, 574–588.

    Article  Google Scholar 

  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 24, 4876–4882.

    Article  Google Scholar 

  30. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  31. Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  32. Saitou, N., & Nei, M. (1987). Mol Biol Evol, 4, 406–425.

    CAS  Google Scholar 

  33. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  34. Hartree, E. F. (1972). Analytical Biochemistry, 48, 422–427.

    Article  CAS  Google Scholar 

  35. Klich, M. A., & Pitt, J. I. (1988). A laboratory guide to common Aspergillus species and their teleomorphs. North Ryde, NSW, Sydney: CSIRO Division of Food Research.

    Google Scholar 

  36. Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). Sydney: Division of Food Research.

    Google Scholar 

  37. Bailey, J. E., & Ollis, D. F. (1986). Biochemical engineering fundamentals (2nd ed.). New York: McGraw Hill.

    Google Scholar 

  38. Damaso, M. C. T., Andrade, C. M. M. C., & Pereira, N., Jr. (2000). Applied Biochemistry and Biotechnology, 84, 821–834.

    Article  Google Scholar 

  39. Soccol, C. R., & Vandenberghe, L. P. S. (2003). Biochemical Engineering Journal, 13, 205–218.

    Article  CAS  Google Scholar 

  40. Bandivadekar, K. R., & Deshpande, V. V. (1994). Biotechnology Letters, 16, 179–182.

    Article  CAS  Google Scholar 

  41. Badhana, A. K., Chadhaa, B. S., Soniaa, K. G., Sainia, H. S., & Bhatb, M. K. (2004). Enzyme and Microbial Technology, 35, 460–466.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the Fundação para o Desenvolvimento da UNESP (Fundunesp) for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heloiza Ferreira Alves-Prado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves-Prado, H.F., Pavezzi, F.C., Leite, R.S.R. et al. Screening and Production Study of Microbial Xylanase Producers from Brazilian Cerrado. Appl Biochem Biotechnol 161, 333–346 (2010). https://doi.org/10.1007/s12010-009-8823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8823-5

Keywords

Navigation