Skip to main content
Log in

Optimization of Biodiesel Production Catalyzed by Fungus Cells Immobilized in Fibrous Supports

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A circulating packed-bed bioreactor system using fibrous nonwoven fabric as the immobilization matrix was suitable for simultaneous cell growth and immobilization of Rhizopus oryzae fungus cells, which could be used for lipase-mediated production of biodiesel by methanolysis of soybean oil. Response surface methodology and 5-level-5-factor central composite rotatable design was proved to be a powerful tool for the optimization of methanolysis conditions catalyzed by immobilized R. oryzae whole cell biocatalyst. A quadratic polynomial regression model was used to analyze the relationship between the yield and the significant reaction parameters. The analysis confirmed that water content, molar ratio of methanol to oil, cell weight, and reaction time were the significant factors affecting the yield at a 95% confidence level (p < 0.05). Under the optimum condition at 10.97% (w/w) water content, 0.64 molar ratio of methanol to oil, 2.25% (w/w) cell weight, and 23.3 h reaction time, the predicted value of yield was 72.6%. Validation experiments with yields of 70.77 ± 2.46% verified the availability and the accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akoh, C. C., Chang, S. W., Lee, G. C., & Shaw, J. F. (2007). Journal of Agricultural and Food Chemistry, 55, 8995–9005.

    Article  CAS  Google Scholar 

  2. Nelson, L. A., Foglia, T. A., & Marmer, W. N. (1996). Journal of the American Oil Chemists’ Society, 73, 1191–1195.

    Article  CAS  Google Scholar 

  3. Adamczak, M., & Bednarski, W. (2004). Process Biochemistry, 39, 1347–1361.

    Article  CAS  Google Scholar 

  4. Shimada, Y., Watanabe, Y., Samukawa, T., Sugibara, A., Noda, I. L., Fukuda, H., et al. (1999). Journal of the American Oil Chemists’ Society, 76, 789–793.

    Article  CAS  Google Scholar 

  5. Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., & Tominaga, Y. (2000). Journal of the American Oil Chemists’ Society, 77, 355–360.

    Article  CAS  Google Scholar 

  6. Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., et al. (2000). Journal of Bioscience and Bioengineering, 90, 180–183.

    CAS  Google Scholar 

  7. Kaieda, M., Samukawa, T., Kondo, A., & Fukuda, H. (2001). Journal of Bioscience and Bioengineering, 91, 12–15.

    Article  CAS  Google Scholar 

  8. Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Journal of Molecular Catalysis B Enzymatic, 30, 125–129.

    Article  CAS  Google Scholar 

  9. Park, E. Y., & Mori, M. (2005). Journal of Molecular Catalysis B Enzymatic, 37, 95–100.

    Article  CAS  Google Scholar 

  10. Al-Zuhair, S., Jayaraman, K. V., Krishnan, S., & Chan, W. H. (2006). Biochemical Engineering Journal, 30, 212–217.

    Article  CAS  Google Scholar 

  11. Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Journal of Molecular Catalysis B Enzymatic, 43, 29–32.

    Article  CAS  Google Scholar 

  12. Nie, K., Xie, F., Wang, F., & Tan, T. (2006). Journal of Molecular Catalysis B Enzymatic, 43, 142–147.

    Article  CAS  Google Scholar 

  13. Du, W., Li, W., Sun, T., Chen, X., & Liu, D. H. (2008). Applied Microbiology and Biotechnology, 79, 331–337.

    Article  CAS  Google Scholar 

  14. Li, W., Du, W., & Liu, D. H. (2007). Process Biochemistry, 42, 1481–1485.

    Article  CAS  Google Scholar 

  15. Fukuda, H., Hama, S., Tamalampudi, S., & Noda, H. (2008). TIBTECH, 26, 668–673.

    CAS  Google Scholar 

  16. Ban, K., Kaieda, M., Matsumoto, T., Kondo, A., & Fukuda, H. (2001). Biochemical Engineering Journal, 8, 39–43.

    Article  CAS  Google Scholar 

  17. Zeng, J., Du, W., Liu, X. Y., & Liu, D. H. (2006). Journal of Molecular Catalysis B Enzymatic, 43, 15–18.

    Article  CAS  Google Scholar 

  18. Fukuda, H., Kondo, A., & Noda, H. (2001). Journal of Bioscience and Bioengineering, 92, 405–416.

    Article  CAS  Google Scholar 

  19. Ban, K., Hama, S., Nishizuka, K., Kaieda, M., Matsumoto, T., Kondo, A., et al. (2002). Journal of Molecular Catalysis B Enzymatic, 17, 157–165.

    Article  CAS  Google Scholar 

  20. Oda, M., Kaieda, M., Hama, S., Yamaji, H., Kondo, A., Izumoto, E., et al. (2005). Biochemical Engineering Journal, 23, 45–51.

    Article  CAS  Google Scholar 

  21. Tamalampudi, S., Talukder, M. R., Hama, S., Numata, T., Kondo, A., & Fukuda, H. (2008). Biochemical Engineering Journal, 39, 185–189.

    Article  CAS  Google Scholar 

  22. Atkinson, B., Black, G. M., Lewis, P. J. S., & Pinches, A. (1979). Biotechnology and Bioengineering, 21, 193–200.

    Article  Google Scholar 

  23. Kaieda, M., Samukawa, T., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., et al. (1999). Journal of Bioscience and Bioengineering, 89, 627–631.

    Article  Google Scholar 

  24. Chen, J. W., & Wu, W. T. (2003). Journal of Bioscience and Bioengineering, 95, 466–469.

    CAS  Google Scholar 

  25. Hama, S., Yamaji, H., Fukumizu, T., Numata, T., Tamalampudi, S., Kondo, A., et al. (2007). Biochemical Engineering Journal, 34, 273–278.

    Article  CAS  Google Scholar 

  26. Heisler, A., Rabiller, C., & Hublin, L. (1991). Biotechnological Letters, 13, 327–332.

    Article  CAS  Google Scholar 

  27. Essamri, M., Deyris, V., & Comeau, L. (1998). Journal of Biotechnology, 60, 97–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from National Science Council and Bureau of Energy, Ministry of Economic Affairs, Republic of China are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JP., Lin, GH. Optimization of Biodiesel Production Catalyzed by Fungus Cells Immobilized in Fibrous Supports. Appl Biochem Biotechnol 161, 181–194 (2010). https://doi.org/10.1007/s12010-009-8776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8776-8

Keywords

Navigation