Chlorella minutissima—A Promising Fuel Alga for Cultivation in Municipal Wastewaters


It is imperative to slash the cost of algal oil to less than $50 bbl−1 for successful algal biofuel production. Use of municipal wastewater for algal cultivation could obviate the need for freshwater and the nutrients—N and P. It would also add CO2 through bacterial activity. Chlorella minutissima Fott et Nova dominated the entire phycoflora year around and through each stage of the wastewater treatment at the oxidation pond system of Wazirabad (Delhi) in India. The ability to grow so profusely in such varied and contrasting situations made this alga unique. Besides pollution tolerance, it grew heterotrophically in dark under acidic conditions and as a mixotroph in presence of light over a range of organic C substrates. It could utilize both ammoniacal and nitrate nitrogen, survived anaerobicity, 5% NaCl and −10 bar of osmotic stress. C. minutissima grew at pH 4–11 and raised the pH set initially by 1 to 3 units in 7.5 h. It showed gigantism and largely kept afloat in presence of utilizable organic carbon, while flocculated in mineral medium and on aging. The alga also possessed potential for biofuel production. The studied parameters indicate why C. minutissima was a potential biomass builder in municipal sewage and could be used to determine which other alga(e) may serve the purpose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Benemann, J., & Oswald, W. (1996). Final report to the US Department of Energy, Grant No. DE-FG22-93PC93204. Pittsburgh Energy Technology Center.

  2. 2.

    Fahm, L. (1980). The waste of nations: The economic utilisation of human waste in agriculture. Montclair, New Jersey, USA: Allenhand, Osmun & Co. Pub, Inc.

    Google Scholar 

  3. 3.

    Niemczynowicz, J. (1997). The water profession and agenda 21. Water Quality International, March/April: 9–11.

  4. 4.

    Bhatnagar, A. (1999). Journal of Environmental Biology, 20, 115–120.

    Google Scholar 

  5. 5.

    Bhatnagar, A., & Bhatnagar, M. (2001). Innovative approaches in microbiology. In D. K. Maheshwari & R. C. Dubey (Eds.), India: Bishen Singh Mahendra Pal Singh, Dehra Dun, pp. 379–403.

  6. 6.

    Droop, M. R. (1967). British Phycological Bulletin, 3(2), 295–297.

    Article  Google Scholar 

  7. 7.

    Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Bacteriological Reviews, 35, 171–205.

    CAS  Google Scholar 

  8. 8.

    Porra, R. J., Thompson, A., & Friedelman, P. E. (1989). Biochimica et Biophysica Acta, 975, 384–394.

    Article  CAS  Google Scholar 

  9. 9.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  10. 10.

    Roe, J. H. (1955). Journal of Biological Chemistry, 212, 335–343.

    CAS  Google Scholar 

  11. 11.

    Bligh, E. G., & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    CAS  Google Scholar 

  12. 12.

    Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. C. (2009). International Journal of Molecular Sciences, 10, 518–532.

    Article  CAS  Google Scholar 

  13. 13.

    Somogyi, M. (1945). Journal of Biological Chemistry, 160, 61–68.

    CAS  Google Scholar 

  14. 14.

    Kumar, A., Tabita, F. R., & van Baalen, C. (1982). Archives of Microbiology, 133, 103–109.

    Article  CAS  Google Scholar 

  15. 15.

    Larslandner (1989). Advanced hazard assessment. In R. S. De Santo (Ed.), Springer Ser. Environmental management (pp. 223–225). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  16. 16.

    Cox, H. E., & Pearson, D. (1962). The chemical analysis of foods. New York, USA: Chemical Publishing Co. Inc.

    Google Scholar 

  17. 17.

    Michael, B. E., & Kaufman, M. R. (1973). Plant Physiology, 51, 914–916.

    Article  Google Scholar 

  18. 18.

    Ogawa, T., & Aiba, S. (1981). Biotechnology and Bioengineering, 23, 1121–1132.

    Article  CAS  Google Scholar 

  19. 19.

    Abeliovich, A., & Weisman, D. (1978). Applied and Environmental Microbiology, 35(1), 32–37.

    CAS  Google Scholar 

  20. 20.

    Day, J. D., Edwards, A. P., & Rodgers, G. A. (1991). Bioresource Technology, 38(2–3), 245–249.

    Article  Google Scholar 

  21. 21.

    Andrade, M. R., & Costa, J. A. V. (2007). Aquaculture, 264(1–4), 130–134.

    Article  Google Scholar 

  22. 22.

    Jeong, H. J., Du Yoo, Y., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S., et al. (2004). Journal of Eukaryotic Microbiology, 51(5), 563–569.

    Article  Google Scholar 

  23. 23.

    Katechakis, A., Haseneder, T., Kling, R., & Stibor, H. (2005). Limnology and Oceanography, 50(4), 1290–1299.

    CAS  Article  Google Scholar 

  24. 24.

    Tittel, J., Bissinger, V., Gaedke, U., & Kamjunke, N. (2005). Protist, 156(1), 63–75.

    Article  CAS  Google Scholar 

  25. 25.

    Orus, M. L., Marco, E., & Martinez, F. (1991). Bioresource Technology, 38, 179–184.

    Article  CAS  Google Scholar 

  26. 26.

    Kremer, B. P. (1979). Journal of Phycology, 15, 244–247.

    Article  CAS  Google Scholar 

  27. 27.

    Raven, J. A., Johnson, A. M., & MacFarlane, J. J. (1990). Biology of the red algae. In: K. M. Cole and R. G. Sheath (Eds.), New York: Cambridge University Press, pp. 171–185.

  28. 28.

    Martinez, F., & Orus, M. I. (1991). Plant Physiology, 95, 1150–1155.

    Article  CAS  Google Scholar 

  29. 29.

    Turpin, D. H., Elrifi, I. R., Birch, D. G., Weger, H. G., & Holmes, J. J. (1988). Canadian Journal of Botany, 66, 2083–2097.

    CAS  Google Scholar 

  30. 30.

    Kamiya, A., & Kowallik, W. (1987). Pl Cell Physiol, 28(4), 611–619.

    CAS  Google Scholar 

  31. 31.

    Bagchi, S. N., Chauhan, V. S., & Palod, A. (1990). Current Microbiology, 21(1), 53–57.

    Article  CAS  Google Scholar 

  32. 32.

    Doucha, J., Straka, F., & Lívanský, K. (2005). Journal of Applied Phycology, 17, 403–412.

    Article  Google Scholar 

  33. 33.

    Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Biotechnology and Bioengineering, 102, 100–112.

    Article  CAS  Google Scholar 

  34. 34.

    Ueno, Y., Kurano, N., & Miyachi, S. (1998). Journal of Fermentation and Bioengineering, 86(1), 38–43.

    Article  CAS  Google Scholar 

Download references


Authors are grateful to the Dean, PG School, IARI, New Delhi and Biorefining and Carbon Cycling Program of the University of Georgia, Athens, GA, USA for providing financial and academic support for the study.

Author information



Corresponding author

Correspondence to Ashish Bhatnagar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhatnagar, A., Bhatnagar, M., Chinnasamy, S. et al. Chlorella minutissima—A Promising Fuel Alga for Cultivation in Municipal Wastewaters. Appl Biochem Biotechnol 161, 523–536 (2010).

Download citation


  • Anaerobiosis
  • Biofuel
  • Chlorella minutissima
  • Mixotrophy
  • Wastewater