Skip to main content
Log in

Production of Acetone–Butanol–Ethanol (ABE) in Direct Fermentation of Cassava by Clostridium saccharoperbutylacetonicum N1-4

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, acetone–butanol–ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ladisch, M. R. (1991). Enzyme and Microbial Technology, 13, 280–283.

    Article  CAS  Google Scholar 

  2. Qureshi, N., & Blaschek, H. P. (2001). Journal of Industrial microbiology & Biotechnology, 27, 292–297.

    Article  CAS  Google Scholar 

  3. Campos, E. J., Qureshi, N., & Blaschek, H. P. (2002). Applied Biochemistry and Biotechnology, 98–100, 553–561.

    Article  Google Scholar 

  4. Grace, M. R. (1977). Cassava processing. Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  5. Jesse, T. W., Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2002). Journal of Industrial microbiology & Biotechnology, 29, 117–123.

    Article  CAS  Google Scholar 

  6. Hongo, M. (1960) US Patent 2945786

  7. Lee, T. M., Ishizaki, A., Yoshino, S., & Furukawa, K. (1995). Biotechnological Letters, 17, 649–654.

    Article  Google Scholar 

  8. Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., & Yoshino, S. (2004). Journal of Bioscience and Bioengineering, 98, 263–268.

    CAS  Google Scholar 

  9. Soni, B. K., Soucaille, P., & Goma, G. (1987). Applied Microbiology and Biotechnology, 25, 317–321.

    Article  CAS  Google Scholar 

  10. Holm, J., Björck, I., Drews, A., & Asp, N. G. (1986). Starch/Stärke, 38, 224–226.

    Article  CAS  Google Scholar 

  11. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2003). World Journal of Microbiology & Biotechnology, 19, 595–603.

    Article  CAS  Google Scholar 

  12. Monot, F., & Engasser, J. M. (1983). Biotechnological Letters, 5, 213–218.

    Article  CAS  Google Scholar 

  13. Madihah, M. S., Ariff, A. B., Sahaid, K. M., Suraini, A. A., & Karim, M. I. A. (2001). World Journal of Microbiology & Biotechnology, 17, 567–576.

    Article  CAS  Google Scholar 

  14. Ma, Y., Cai, C., Wang, J., & Sun, D. W. (2006). Journal of Food Engineering, 73, 297–303.

    Article  CAS  Google Scholar 

  15. Ahmad, F. B., Williams, P. A., Doublierb, J. L., Durand, S., & Buleon, A. (1999). Carbohydrate Polymers, 38, 361–370.

    Article  CAS  Google Scholar 

  16. Wang, W. J., Powell, A. D., & Oates, C. G. (1995). Carbohydrate Polymers, 26, 91–97.

    Article  CAS  Google Scholar 

  17. Sandhu, K. S., & Singh, N. (2007). Food Chemistry, 101(4), 1499–1507.

    Article  CAS  Google Scholar 

  18. Rao, M. A., & Tattiyakul, J. (1999). Carbohydrate Polymers, 38(2), 123–132.

    Article  CAS  Google Scholar 

  19. Yuan, Y., Zhang, L., Dai, Y., & Yu, J. (2007). Journal of Food Engineering, 82(4), 436–442.

    Article  Google Scholar 

  20. Defloor, I., Dehing, I., & Delcour, J. A. (1998). Starch/Stärke, 50, 58–64.

    Article  CAS  Google Scholar 

  21. Cone, J. W., & Wolters, G. E. (1990). Starch/Stärke, 42, 298–301.

    Article  CAS  Google Scholar 

  22. Franco, M. L. C., Preto, S. J. R., & Ciacco, C. F. (1992). Starch/Stärke, 44, 113–116.

    Article  Google Scholar 

  23. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2005). Journal of Biotechnology, 115, 179–187.

    Article  CAS  Google Scholar 

  24. Cui, R., & Oates, C. G. (1997). Carbohydrate Polymers, 32, 65–72.

    Article  Google Scholar 

  25. Shariff, Y. N., Karim, A. A., Fazilah, A., & Zaidul, I. S. M. (2009). Food Hydrocolloids, 23, 434–440.

    Article  Google Scholar 

  26. Zhang, T., & Oates, C. G. (1999). Food Chemistry, 65, 157–163.

    Article  Google Scholar 

  27. Wang, W. J., Powell, A. D., & Oates, C. G. (1996). Sago starch as a biomass source: raw sago starch hydrolysis by commercial enzymes. Bioresource Technology, 55(1), 55–61.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Japan Society for Promotion of Science (JSPS). The authors would like to thank Dr. Nana Yokochi for the useful technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genta Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thang, V.H., Kanda, K. & Kobayashi, G. Production of Acetone–Butanol–Ethanol (ABE) in Direct Fermentation of Cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 161, 157–170 (2010). https://doi.org/10.1007/s12010-009-8770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8770-1

Keywords

Navigation