Skip to main content
Log in

Response Surface Optimization of Medium Components for Naringinase Production from Staphylococcus xylosus MAK2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Response surface methodology was used to optimize the fermentation medium for enhancing naringinase production by Staphylococcus xylosus. The first step of this process involved the individual adjustment and optimization of various medium components at shake flask level. Sources of carbon (sucrose) and nitrogen (sodium nitrate), as well as an inducer (naringin) and pH levels were all found to be the important factors significantly affecting naringinase production. In the second step, a 22 full factorial central composite design was applied to determine the optimal levels of each of the significant variables. A second-order polynomial was derived by multiple regression analysis on the experimental data. Using this methodology, the optimum values for the critical components were obtained as follows: sucrose, 10.0%; sodium nitrate, 10.0%; pH 5.6; biomass concentration, 1.58%; and naringin, 0.50% (w/v), respectively. Under optimal conditions, the experimental naringinase production was 8.45 U/mL. The determination coefficients (R 2) were 0.9908 and 0.9950 for naringinase activity and biomass production, respectively, indicating an adequate degree of reliability in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Puri, M., Marwaha, S. S., & Kothari, R. M. (1996). Enzyme and Microbial Technology, 18, 281–285.

    Article  CAS  Google Scholar 

  2. Zverlov, V., Hertel, C., Bronnernmeier, K., Hroch, A., Kellermann, J., & Schwarz, W. H. (2000). Molecular Microbiology, 35, 173–179.

    Article  CAS  Google Scholar 

  3. Hashimoto, W., Miyake, O., Nankai, H., & Murata, K. (2003). Archives of Biochemistry and Biophysics, 415, 235–244.

    Article  CAS  Google Scholar 

  4. Birgisson, H., Hreggvidson, G. O., Fridjonsson, O. H., Mort, A. Kristjansson, J. K., & Mattiasson, B. (2004). Enzyme and Microbial Technology, 34, 561–571.

    Article  CAS  Google Scholar 

  5. Miyata, T., Kashige, N., Satho, T., Yamaguci, T., Aso, Y., & Miake, F. (2005). Current Microbiology, 51, 105–109.

    Article  CAS  Google Scholar 

  6. Puri, M., Banerjee, A., & Banerjee, U. C. (2005). Process Biochemistry, 40, 195–201.

    Article  CAS  Google Scholar 

  7. Puri, M., Kaur, A., Kanwar, J. R., & Singh, R. S. (2009). Immobilized enzymes for debittering citrus fruit juices. In M. D. Busto & N. Ortega (Eds.), Food enzymes: Application of new technologies (pp. 91–103). India: Transworld Research Network.

    Google Scholar 

  8. Caldini, C. (1994). Enzyme and Microbial Technology, 16, 286–291.

    Article  CAS  Google Scholar 

  9. Thirkettle, J. (2000). Journal of Antibiotic, 53, 733–735.

    CAS  Google Scholar 

  10. Kamiya, S., Esaki, S., & Tanaka, R. (1985). Agriculture and Biological Chemistry, 49, 55–62.

    CAS  Google Scholar 

  11. Gonzalez-Barrio, R., Trinidale, L. M., Manzanares, P., deGraaff, L. H., Tomas-Barberan, F. A., & Espin, J. C. (2004). Journal of Agriculture and Food Chemistry, 52, 6136–6142.

    Article  CAS  Google Scholar 

  12. Gokhale, D. V., Patil, S. G., & Bastawde, K. B. (1991). Applied Biochemistry and Biotechnology, 30, 99–109.

    Article  CAS  Google Scholar 

  13. Cochran, W. G., & Cox, G. M. (1992). In experimental designs (2nd ed.). New York: Wiley Classics Library.

    Google Scholar 

  14. Balusu, R., Paduru, R. R., Kuravi, S. K., Seenayya, G., & Reddy, G. (2005). Process Biochemistry, 40, 3025–3030.

    Article  CAS  Google Scholar 

  15. Rao, Y. K., Lub, S. C., Liub, B., & Tzeng, Y. M. (2006). Biochemical Engineering Journal, 28, 57–66.

    Article  CAS  Google Scholar 

  16. Adinarayana, K., & Ellaiah, P. (2002). Journal of Pharmaceutical Science, 5, 272–278.

    CAS  Google Scholar 

  17. Dutt, K., Gupta, P., Saran, S., Misra, S., & Saxena, R. K. (2009). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8504-9.

  18. Chandel, M., & Azmi, W. (2009). Bioresource Technology, 100, 1840–1846.

    Article  CAS  Google Scholar 

  19. Hujanen, M., Linko, S., Linko, Y. Y., & Leisola, M. (2001). Applied Microbiology and Biotechnology, 56, 126–130.

    Article  CAS  Google Scholar 

  20. Yu, X., Hallet, S. G., Sheppard, J., & Watson, A. K. (1997). Applied Microbiology and Biotechnology, 47, 301–305.

    Article  CAS  Google Scholar 

  21. Lhomme, B., & Roux, J. C. (1991). Bioresource Technology, 35, 301–312.

    Article  CAS  Google Scholar 

  22. Montgomery, D. C. (2001). In design and analysis of experiments. New York: Wiley.

    Google Scholar 

  23. Kalil, S. J., Maugeri, F., & Rodrigues, M. I. (2000). Process Biochemistry, 35, 539–550.

    Article  CAS  Google Scholar 

  24. Singh, R. S., Singh, H., & Saini, G. K. (2008). Applied Biochemistry and Biotechnology. doi:10/1007s12010-008-8180-9.

  25. Mutalik, S. R., Vaidya, B. K., Joshi, R. M., Desai, K. M., & Nene, S. N. (2008). Bioresource Technology, 99, 7875–7880.

    Article  CAS  Google Scholar 

  26. Huang, Y., Zheng, H., & Yan, Y. (2009). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8377-y.

  27. Kamble, A., & Banerjee, U. C. (2008). Applied Biochemistry and Biotechnology, 151, 143–150.

    Article  CAS  Google Scholar 

  28. Purama, R. K., & Goel, R. K. (2008). Applied Biochemistry and Biotechnology, 151, 182–192.

    Article  CAS  Google Scholar 

  29. Puri, M., Kaur, A., & Singh, R. S. (2009). A process for the production of bacterial naringinase for debittering of citrus fruit juice. TIFA/2007.

  30. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and product optimization using designed experiments (p. 824). New York: Wiley.

    Google Scholar 

  31. Kim, H. M., Kim, J. G., Cho, J. D., & Hong, J. W. (2003). Polymer Testing, 22, 899–906.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing financial assistance to carry out this study from a project grant CSIR 38(1133)/07/ EMR-II. Aneet Kaur gratefully acknowledges the award of SRF (Senior Research Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, M., Kaur, A., Singh, R.S. et al. Response Surface Optimization of Medium Components for Naringinase Production from Staphylococcus xylosus MAK2 . Appl Biochem Biotechnol 162, 181–191 (2010). https://doi.org/10.1007/s12010-009-8765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8765-y

Keywords

Navigation