Abstract
A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA–alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 °C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)–alginate beads with three different sizes (1–3 mm), at three different alginate concentrations (0.2–1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 °C for the PVA–alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)–alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 °C. The Michaelis constant (K Mapp) and the maximum reaction velocity (V maxapp) were evaluated for both free (K Mapp = 0.233 mM; V maxapp = 0.13 mM min−1) and immobilized naringinase (K Mapp = 0.349 mM; V maxapp = 0.08 mM min−1). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 °C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.
















Similar content being viewed by others
References
Ferreira, L., Afonso, C., Vila-Real, H., Alfaia, A., & Ribeiro, M. H. L. (2008). Food Technology and Biotechnology, 46(2), 146–150.
Ladaniya, M. (2008). Citrus fruit: Biology, technology and evaluation. Amsterdam: Elsevier.
Vila Real, H. J., Alfaia, A. J., Calado, A. R. T., & Ribeiro, M. H. L. (2007). Food Chemistry, 102(3), 565–570.
Ribeiro, I. A., Rocha, J., Sepodes, B., Mota-Filipe, H., & Ribeiro, M. H. L. (2008). Journal of Molecular Catalysis B Enzymatic, 52–53, 13–18.
Bajpai, A. K., & Bhanu, S. (2003). Colloid & Polymer Science, 282, 76–83.
Lozinsky, V. L., & Plieva, F. M. (1998). Enzyme and Microbial Technology, 23, 227–242.
Durieux, A., Nicolay, X., & Simon, J. P. (2000). Biotechnology Letters, 22, 1679–1684.
Czichocki, G., Dautzenberg, H., Capan, E., & Vorlop, K.-D. (2001). Biotechnology Letters, 23(16), 1303–1307.
Gröger, H., Capan, E., Barthuber, A., & Vorlop, K. D. (2001). Organic Letters, 3, 1969–1972.
Wilson, L., Illanes, A., Pessela, B. C. C., Abian, O., Fernández-Lafuente, R., & Guisán, J. M. (2004). Biotechnology and Bioengineering, 86(5), 558–562.
Parascandola, P., Branduardi, P., & Alteris, E. (2006). Enzyme and Microbial Technology, 38, 184–189.
Schlieker, M., & Vorlop, K. D. (2006). A novel immobilization method for entrapment LentiKats® methods in biotechnology. In J. M. Guisan (Ed.), Immobilization of enzymes and cells (2nd ed., pp. 333–343). Heidelberg: Springer.
Ariga, O., Takagi, H., Nishizawa, H., & Sano, Y. (1987). Journal of Fermentation Technology, 65, 651–658.
Imai, K., Shiomi, T., Uchida, K., & Miya, M. (1986). Biotechnology and Bioengineering, 28, 1721–1726.
Idris, A., Zain, N., & Suhaimi, M. (2008). Process Biochemistry, 43, 331–338.
Long, Z., Huang, Y., Cai, Z., Cong, W., & Ouyang, F. (2004). Process Biochemistry, 39, 2129–2133.
Chen, K., & Houng, J. (1994). Cell immobilization with phosphorylated polyvinyl alcohol (PVA) gel. In G. F. Bickerstaff (Ed.), Immobilization of enzymes and cells: Methods biotechnology (Vol. 1). Heidelberg: Springer.
Chen, K., Chen, S., & Houng, J. (1996). Enzyme and Microbial Technology, 18, 502–506.
Chang, C., & Tseng, S. (1998). Biotechnology Techniques, 12(12), 865–868.
Li-sheng, Z., Wei-zhong, W., & Jian-long, W. (2007). Journal of Environmental Science, 19, 1293–1297.
Dave, R., & Madamwar, D. (2006). Process Biochemistry, 41, 951–955.
Queiroz, A., Passos, E., Alves, S., Silva, G., Higa, O., & Vítolo, M. (2005). Journal of Applied Polymer Science, 102, 1553–1560.
Hsia, T., Feng, Y., Ho, C., Chou, W., & Tseng, S. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 721–727.
Wu, A. K. Y., & Wiesecarver, K. D. (1992). Biotechnology and Bioengineering, 39, 447–449.
Grishin, S. I., & Tuovinen, O. H. (1989). Applied Microbiology and Biotechnology, 31, 505–511.
Lin, H., Liu, W., Liu, Y., & Cheng, C. (2002). Journal Polymer Research, 9, 233–238.
Kurokawa, H., Shibayama, M., Ishimaru, T., Nomura, S., & Wu, W. (1992). Polymer, 33(10), 2182–2188.
Leibler, L., Pezron, E., & Pincus, P. A. (1988). Polymer, 29, 1105–1109.
Keita, G., Ricard, A., Audebert, R., Pezron, E., & Leibler, L. (1995). Polymer, 36, 49.
Pattanapitpaisal, P., Brown, N. L., & Macaskie, L. E. (2001). Biotechnology Letters, 23, 61–65.
Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.
Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.
Kim, J., Choi, H., et al. (2008). International Journal of Pharmaceutics, 359, 79–86.
Li, M., Cheng, S., & Yan, H. (2007). Green Chemistry, 9, 894–898.
Braze, C. S., & Peppas, N. A. (2000). European Journal of Pharmaceutics and Biopharmaceutics, 49, 47–58.
Kim, C., & Lee, P. (1992). Pharmaceutical Research, 9, 10–16.
Nizam Horia, M., Abd Alla Safaa, G., & El-Naggar Abdel Wahab, M. (2007). Journal of Macromolecular Science A, 44(3), 291–297.
Mikkelsen, A., & Elgsaeter, A. (1995). Biopolymers, 36(1), 17–41.
Sekeroglu, G., Fadıloglu, S., & Gogus, F. (2006). European Food Research and Technology, 224, 55–60.
Pedro, H. A., Alfaia, A. J., Marques, J., Vila-Real, H. J., Calado, A. T., & Ribeiro, M. H. L. (2007). Enzyme and Microbial Technology, 40, 442–446.
Ribeiro, I. A., & Ribeiro, M. H. L. (2008). Journal of Molecular Catalysis B Enzymatic, 51, 10–18.
Busto, M. D., Meza, V., Ortega, N., & Perez-Mateos, M. (2007). Food Chemistry, 104, 1177–1182.
Soares, N., & Hotchkiss, J. (1998). Journal of Food Science, 63, 61–65.
Norouzian, F., Hosseinzadeh, A., Inanlou, D., & Moazami, N. (1999). World Journal of Microbiology and Biotechnology, 15(4), 501–502.
Puri, M., Kaur, H., & Kennedy, J. F. (2005). Journal of Chemical Technology & Biotechnology, 80(10), 1160–1165.
Norouzian, D. (2003). Iranian Journal of Biotechnology, 1(4), 197–206.
Tsen, H., Tsai, S., & Yu, G. (1989). Journal of Fermentation and Bioengineering, 67, 186–189.
Buchholz, K., & Klein, J. (1987). In K. Mosbach (Ed.), Methods in enzymology: Immobilized enzymes and cells (pp. 3–30). London: Academic.
Manjón, A., Bastida, J., Romero, C., Jimeno, A., & Iborra, J. L. (1985). Biotechnology Letters, 7(7), 477–482.
Luckarift, H. R., Spain, J. C., Naik, R. R., & Stone, M. O. (2004). Nature Biotechnology, 22, 211–213.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nunes, M.A.P., Vila-Real, H., Fernandes, P.C.B. et al. Immobilization of Naringinase in PVA–Alginate Matrix Using an Innovative Technique. Appl Biochem Biotechnol 160, 2129–2147 (2010). https://doi.org/10.1007/s12010-009-8733-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-009-8733-6


