Skip to main content
Log in

Partial Characterization of Inulinases Obtained by Submerged and Solid-State Fermentation Using Agroindustrial Residues as Substrates: A Comparative Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inulinase belongs to an important class of enzymes as it can be used to produce high-fructose syrups by enzymatic hydrolysis of inulin and fructooligosaccharides, which has been used as functional food. This work aimed to carry out a partial characterization of the crude enzymatic extract of two different inulinases, obtained by solid-state fermentation (SSF) and submerged fermentation (SmF), using agroindustrial residues as substrates. The crude enzymatic extract obtained by SmF showed an optimal pH and temperature for hydrolytic activity of 4.5 and 55 °C, respectively; and that obtained by SSF conducted to optimal pH and temperature of 5.0 and 55 °C, respectively. Both enzymes presented high thermostability, with a D value of 230.4 h and 123.1 h for SmF and SSF, respectively. The inulinase produced by SmF showed highest stability at pH 4.4, while inulinase obtained by SSF was more stable at pH 4.8. The results showed that inulinase obtained by SmF is less susceptible to pH effect and the inulinase obtained by SSF is more resistant to higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gill, P. K., Manhas, R. K., & Singh, P. (2006). Bioresour Technol, 97, 894–902.

    Article  CAS  Google Scholar 

  2. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Trends Food Sci Tech, 16, 442–457.

    Article  CAS  Google Scholar 

  3. Mazutti, M., Bender, J. P., Treichel, H., & Di Luccio, M. (2006). Enzyme Microb Technol, 39, 56–9.

    Article  CAS  Google Scholar 

  4. Bender, J. P., Mazutti, M. A., Oliveira, D., Di Luccio, M., & Treichel, H. (2006). Appl Biochem Biotech, 129–132, 951–8.

    Article  Google Scholar 

  5. Santisteban-Silva, B. O. Y., & Maugeri, F. (2005). Enzyme Microb Technol, 36, 717–724.

    Article  Google Scholar 

  6. Cazetta, M. L., Martins, P. M. M., Monti, R., & Contiero, J. (2005). J Food Eng, 66, 301–5.

    Article  Google Scholar 

  7. Selvakumar, P., & Pandey, A. (1999). Process Biochem, 34, 851–8.

    Article  CAS  Google Scholar 

  8. Zhang, L., Zhao, C., Zhu, D., Otha, Y., & Wang, Y. (2004). Protein Expres Purif, 35, 272–5.

    Article  CAS  Google Scholar 

  9. Jing, W., Zhengyu, J., Bo, J., & Augustine, A. (2003). Process Biochem., 39, 5–11.

    Article  Google Scholar 

  10. Park, J. P., Bae, J. T., You, D. J., & Kim, B. W. (1999). Biotechnol. Lett., 21, 1043–6.

    Article  CAS  Google Scholar 

  11. Jong, W. Y., Yong, J. C., Chii, H. S., & Seung, K. S. (1999). J Biosci Bioeng, 87, 291–5.

    Article  Google Scholar 

  12. Pandey, A., Selvakumar, P., Soccol, C. R., Soccol, V. T., Krieger, N., & Fontana, J. D. (1999). Appl Biochem Biotech, 81, 35–52.

    Article  CAS  Google Scholar 

  13. Kalil, S. J., Suzan, R., Maugeri, F., & Rodrigues, M. I. (2001). Appl Biochem Biotech, 94, 257–264.

    Article  CAS  Google Scholar 

  14. Pandey, A., Soccol, C. R., Rodriguez-Leon, J. A., & Nigam, P. (2001). Solid-state fermentation in biotechnoloy: fundamentals and applications. New Delhi: Asiatech Publischers, INC.

    Google Scholar 

  15. Mitchell, D. A., Krieger, N., Stuart, D., & Pandey, A. (2000). Process Biochem, 35, 1211–25.

    Article  CAS  Google Scholar 

  16. Chen, H. Z., Xu, J., & Hu, Z. (2005). Biochem Eng J, 23, 117–122.

    Article  Google Scholar 

  17. Vandamme, E. J., & Derycke, D. G. (1983). Adv Appl Microbiol, 29, 139–176.

    Article  CAS  Google Scholar 

  18. Valduga, E., Treichel, H., Valério, A., Jacques, R., Furigo Júnior, A., & Di Luccio, M. (2007). Química Nova, 30, 1860–1866.

    Article  CAS  Google Scholar 

  19. Treichel, H., Mazutti, M.A., Maugeri Filho F. and Rodrigues, M.I. (2008) Bioproc. Biosys. Eng. doi: 10.1007/s00449-008-0262-0.

  20. Miller, G. L. (1959). Anal Chem, 31, 426–428.

    Article  CAS  Google Scholar 

  21. Fachin, D., Loey, A. M. V., Nguyen, B. L., Verlent, I., & Hedricks, M. E. (2002). Biotech Progress, 18, 739–744.

    Article  CAS  Google Scholar 

  22. Pessoa, A., & Vitolo, M. (1999). Braz J Chem Eng, 16, 237–245.

    CAS  Google Scholar 

  23. Otha, K., Suetsugu, N., & Nakamura, T. (2002). J Biosci Bioeng, 94, 78–80.

    Article  Google Scholar 

  24. Cruz-Guerrero, A., Garcia-Peña, I., Barzana, E., Racia-Garibay, M., & Gómez-Ruiz, L. (1995). J Ferment Bioeng, 80, 159–163.

    Article  CAS  Google Scholar 

  25. Kushi, R. T., Monti, R., & Contiero, J. (2000). J Ind Microbiol Biotecnol, 25, 63–9.

    Article  CAS  Google Scholar 

  26. Ettalibi, M., & Baratti, J. C. (2001). Enzyme Microb Technol, 28, 596–601.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FAPERGS, FAPESP, CAPES, and CNPq for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazutti, M.A., Skrowonski, A., Boni, G. et al. Partial Characterization of Inulinases Obtained by Submerged and Solid-State Fermentation Using Agroindustrial Residues as Substrates: A Comparative Study. Appl Biochem Biotechnol 160, 682–693 (2010). https://doi.org/10.1007/s12010-009-8687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8687-8

Keywords

Navigation