Skip to main content
Log in

Maximization of β-Galactosidase Production: A Simultaneous Investigation of Agitation and Aeration Effects

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the agitation and aeration effects in the maximization of the β-galactosidase production from Kluyveromyces marxianus CCT 7082 were investigated simultaneously, in relation to the volumetric enzyme activity and the productivity, as well as the analysis of the lactose consumption and production of glucose, and galactose of this process. Agitation and aeration effects were studied in a 2 L batch stirred reactor. A central composite design (22 trials plus three central points) was carried out. Agitation speed varied from 200 to 500 rpm and aeration rate from 0.5 to 1.5 vvm. It has been shown in this study that the volumetric enzyme production was strongly influenced by mixing conditions, while aeration was shown to be less significant. Linear models for activity and productivity due to agitation and aeration were obtained. The favorable condition was 500 rpm and 1.5 vvm, which lead to the best production of 17 U mL−1 for enzymatic activity, 1.2 U mL−1 h−1 for productivity in 14 h of process, a cellular concentration of 11 mg mL−1, and a 167.2 h−1 volumetric oxygen transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

K L a :

Volumetric oxygen transfer coefficient (h−1)

rpm:

Revolution per minute

v/v:

Inoculum/broth volume

vvm:

Air volume per broth volume per minute

Y X/S :

Cell yield on substrate

Y P/X :

Product yield on substrate

References

  1. Jurado, E., Camacho, F., Luzón, G., & Vicaria, J. M. (2002). Enzyme and Microbial Technology, 31, 300–309. doi:10.1016/S0141-0229(02)00107-2.

    Article  CAS  Google Scholar 

  2. Mahoney, R. R. (1998). Food Chemistry, 63, 147–154. doi:10.1016/S0308-8146(98)00020-X.

    Article  CAS  Google Scholar 

  3. Boon, M. A., Janssen, A. E. M., & Riet, K. V. (2000). Enzyme and Microbial Technology, 26, 271–281. doi:10.1016/S0141-0229(99)00167-2.

    Article  CAS  Google Scholar 

  4. Nor, Z. M., Tamer, M. I., Mehrvar, M., Scharer, J. M., Moo-Young, M., & Jervis, E. J. (2001). Biotechnology Letters, 23, 845–849. doi:10.1023/A:1010526831985.

    Article  CAS  Google Scholar 

  5. Justen, P., Paul, G. C., Nienow, A. W., & Thomas, C. R. (1998). Biotechnology and Bioengineering, 59, 762–775.

    Article  CAS  Google Scholar 

  6. Serrano-Carreón, L., Corona, R. M., Sanchez, A., & Galindo, E. (1998). Process Biochemistry, 33, 133–146. doi:10.1016/S0032-9592(97)00039-3.

    Article  Google Scholar 

  7. Schneider, A. L. S., Merkle, R., Carvalho-Jonas, M. F., Jonas, R., & Furlan, S. (2001). Biotechnology Letters, 23, 547–550. doi:10.1023/A:1010338904870.

    Article  CAS  Google Scholar 

  8. Giavasis, I., Harvey, L. M., & Mcneil, B. (2006). Enzyme and Microbial Technology, 38, 101–108. doi:10.1016/j.enzmictec.2005.05.003.

    Article  CAS  Google Scholar 

  9. Milner, J. A., Martin, D. J., & Smith, A. (1996). Enzyme and Microbial Technology, 18, 507–512. doi:10.1016/0141-0229(95)00155-7.

    Article  CAS  Google Scholar 

  10. Feng, Y., He, Z., Ong, S. L., Hu, J., Zhang, Z., & Ng, W. J. (2003). Enzyme and Microbial Technology, 322, 82–89.

    Google Scholar 

  11. Pinheiro, R., Belo, I., & Mota, M. (2003). Letters in Applied Microbiology, 37, 438–442. doi:10.1046/j.1472-765X.2003.01429.x.

    Article  CAS  Google Scholar 

  12. Kalil, S. J., Maugeri-Filho, F., & Rodrigues, M. I. (2000). Process Biochemistry, 35, 539–550. doi:10.1016/S0032-9592(99)00101-6.

    Article  CAS  Google Scholar 

  13. Burkert, J. F. M., Maugeri-Filho, F., & Rodrigues, M. I. (2004). Bioresource Technology, 91, 77–84. doi:10.1016/S0960-8524(03)00152-4.

    Article  CAS  Google Scholar 

  14. Manera, A. P., Ores, J. C., Ribeiro, V. A., Burkert, C. A. V., & Kalil, S. J. (2008). Food Technology and Biotechnology, 46, 66–72.

    CAS  Google Scholar 

  15. Burkert, J. F. M., Maldonado, R. R., Maugeri-Filho, F., & Rodrigues, M. I. (2005). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80, 61–67. doi:10.1002/jctb.1157.

    Article  CAS  Google Scholar 

  16. Silva-Santisteban, B. O. Y., & Maugeri-Filho, F. (2005). Enzyme and Microbial Technology, 36, 717–724. doi:10.1016/j.enzmictec.2004.12.008.

    Article  CAS  Google Scholar 

  17. Rech, R., Cassini, C. F., Secchi, A., & Ayub, M. (1999). Journal of Industrial Microbiology & Biotechnology, 23, 91–96. doi:10.1038/sj.jim.2900692.

    Article  Google Scholar 

  18. Galaction, A. I., Cascaval, D., Oniscu, C., & Turnea, M. (2004). Biochemical Engineering Journal, 20, 85–94. doi:10.1016/j.bej.2004.02.005.

    Article  CAS  Google Scholar 

  19. Medeiros, F. O., Alves, F. G., Lisboa, C. R., Martins, D. S., Burket, C. A. V., & Kalil, S. J. (2008). Química Nova, 31, 336–339.

    Google Scholar 

  20. Inchaurrondo, V. A., Yantorno, O. M., & Voget, C. E. (1994). Biochemistry, 29, 47–54.

    CAS  Google Scholar 

  21. Belo, I., & Mota, M. (1998). Biotechnology and Bioengineering, 8, 451–455.

    Google Scholar 

  22. Bandaiphet, C., & Prasertsan, P. (2006). Carbohydrate Polymers, 66, 216–228. doi:10.1016/j.carbpol.2006.03.004.

    Article  CAS  Google Scholar 

  23. Longhi, L. G. S., Luvizetto, D. J., Ferreira, L. S., Rech, R., Ayub, M. A. Z., & Secchi, A. R. (2004). Journal of Industrial Microbiology & Biotechnology, 31, 35–40. doi:10.1007/s10295-004-0110-4.

    Article  CAS  Google Scholar 

  24. Mahoney, R. R., Nickerson, T. A., & Whitaker, J. R. (1974). Journal of Dairy Science, 58, 1620–1629.

    Article  Google Scholar 

  25. Gonzales-Siso, M. I. (1994). Process Biochemistry, 29, 565–568. doi:10.1016/0032-9592(94)80019-7.

    Article  Google Scholar 

  26. Ladero, M., Santos, A., García, J. L., Carrascosa, A. V., Pessela, B. C. C., & García-Ochoa, F. (2002). Enzyme and Microbial Technology, 30, 392–405. doi:10.1016/S0141-0229(01)00506-3.

    Article  CAS  Google Scholar 

  27. Ornelas, A. P., Silveira, W. B., Sampaio, F. C., & Passos, F. M. L. (2008). Journal of Applied Microbiology, 104, 1008–1013. doi:10.1111/j.1365-2672.2007.03622.x.

    Article  CAS  Google Scholar 

  28. Engel, L., Ebrahimi, M. P., & Czermak, P. (2008). Desalination, 224, 46–51. doi:10.1016/j.desal.2007.04.078.

    Article  CAS  Google Scholar 

  29. Chen, C., Yu, M., Cheng, T., Sheu, D., Duan, K., & Tai, W. (2006). Biotechnology Letters, 28, 793–797. doi:10.1007/s10529-006-9002-1.

    Article  CAS  Google Scholar 

  30. Lukondeh, T., Ashbolt, N. J., & Rogers, P. L. (2005). Journal of Industrial Microbiology & Biotechnology, 8, 284–288. doi:10.1007/s10295-005-0245-y.

    Google Scholar 

  31. Rech, R., & Ayub, M. A. Z. (2007). Process Biochemistry, 42, 873–877.

    CAS  Google Scholar 

  32. Haaland, P. D. (1989). Experimental design in biotechnology. New York: Marcel Dekker.

    Google Scholar 

  33. Carvalho, C. M. L., Serralheiro, M. L. M., Cabral, J. M. S., & Aires-Barros, M. R. (1997). Enzyme and Microbial Technology, 2, 117–123. doi:10.1016/S0141-0229(96)00245-1.

    Article  Google Scholar 

  34. Sako, T., Matsumoto, K., & Ryuchiro, T. (1999). International Dairy Journal, 9, 69–80. doi:10.1016/S0958-6946(99)00046-1.

    Article  CAS  Google Scholar 

  35. Shin, H. J., Park, J. M., & Yang, J. W. (1998). Process Biochemistry, 33, 787–792. doi:10.1016/S0032-9592(98)00045-4.

    Article  CAS  Google Scholar 

  36. Bruins, M. E., Strubel, M., van Lieshout, J. F. T., Janssen, A. E. M., & Boom, R. M. (2003). Enzyme and Microbial Technology, 33, 3–11. doi:10.1016/S0141-0229(03)00096-6.

    Article  CAS  Google Scholar 

  37. Neri, D. F. M., Balcão, V. M., Costa, R. S., Rocha, I. C. A. P., Ferreira, E. M. F. C., Torres, D. P. M., et al. (2009). Food Chemistry, 115, 92–99. doi:10.1016/j.foodchem.2008.11.068.

    Article  CAS  Google Scholar 

  38. Albayrak, N., & Yang, S. T. (2002). Biotechnology and Bioengineering, 77, 8–19. doi:10.1002/bit.1195.

    Article  CAS  Google Scholar 

  39. Nakkharat, P., & Haltrich, D. (2006). Applied Biochemistry and Biotechnology, 129, 215–225. doi:10.1385/ABAB:129:1:215.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES/PROCAD for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Juliano Kalil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, F.G., Filho, F.M., de Medeiros Burkert, J.F. et al. Maximization of β-Galactosidase Production: A Simultaneous Investigation of Agitation and Aeration Effects. Appl Biochem Biotechnol 160, 1528–1539 (2010). https://doi.org/10.1007/s12010-009-8683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8683-z

Keywords

Navigation