Skip to main content
Log in

Biotransformation of Paeonol and Emodin by Transgenic Crown Galls of Panax quinquefolium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two aromatic substrates, paeonol (1) and emodin (2), were biotransformed by using transgenic crown galls of Panax quinquefolium. Four biotransformed products (36) were isolated and identified by physicochemical and spectral methods. A β-glucoside (3, 73.2% of biotransformation yield) and a 1-(2,4-dimethoxyphenyl)- ethanone (4, 8.03%) were isolated from the suspension cultures after 7-day incubation of substrate 1. Upon administration of substrate 2, another β-glucoside [emodin-6-O-β-d-glucopyranoside (5), 19.2%] and a hydroxylated derivative, citreorosein (6, 54.6%), were also obtained. The results demonstrate that transgenic crown galls of P. quinquefolium have the capacities to catalyze glycosylation, hydroxylation, and methylation reactions in the plant cells on those aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

UDP:

Uridine bisphosphate

MS Medium:

Murashige and Skoog Medium (1962)

TLC:

Thin-layer chromatography

Varian Inova NMR:

Varian Inova nuclear magnetic resonance

TMS:

Tetramethylsilane

HPLC:

High-performance liquid chromatography

References

  1. Suga, T., & Hirata, T. (1990). Phytochemistry, 29, 2393–2406. doi:10.1016/0031-9422(90)85155-9.

    Article  CAS  Google Scholar 

  2. Ishihara, K., Hamada, H., Hirata, T., & Nakajima, N. (2003). J Mol Catal, B Enzym, 23, 145–170. doi:10.1016/S1381-1177(03)00080-8.

    Article  CAS  Google Scholar 

  3. Furuya, T., Ushiyama, M., Ashida, Y., & Yoshikawa, T. (1989). Phytochemistry, 28, 483–487. doi:10.1016/0031-9422(89)80036-6.

    Article  CAS  Google Scholar 

  4. Mastelic, J., Jerkovic, I., Vinkovic, M., Dzolic, Z., & Vikic-Topic, D. (2004). Croat Chem Acta, 77, 491–500.

    CAS  Google Scholar 

  5. Namme, R., Mitsugi, T., Takahashi, H., & Ikegami, S. (2005). Tetrahedron Lett, 46, 3033–3036. doi:10.1016/j.tetlet.2005.03.016.

    Article  CAS  Google Scholar 

  6. Matkowski, A. (2008). Biotechnol Adv, 26, 548–560. doi:10.1016/j.biotechadv.2008.07.001.

    Article  CAS  Google Scholar 

  7. Banthorpe, D. V., & Osborne, M. J. (1984). Phytochemistry, 23, 905–907. doi:10.1016/S0031-9422(00)85057-8.

    Article  CAS  Google Scholar 

  8. Song, Y. B., & Yu, R. M. (2001). J Senyang Pharmaceut Univ, 18(2), 152–156.

    CAS  Google Scholar 

  9. Yu, R. M., Song, Y. B., Zhang, H., Ye, W. C., Zhang, Y. L., & Yao, X. S. (2003). Chin J Biotechnol, 19, 372–375.

    CAS  Google Scholar 

  10. Saito, K., Yamazaki, M., & Murakoshi, I. (1992). J Nat Products, 55, 149–162. doi:10.1021/np50080a001.

    Article  CAS  Google Scholar 

  11. Sun, Y. S., Liu, Z. B., Wang, J. H., Tian, W., Zhou, H. Y., Zhu, L. X., et al. (2008). Sep Purif Technol, 64, 221–226.

    Article  CAS  Google Scholar 

  12. Ding, Y., Zhao, L., Mei, H., Zhang, S. L., Huang, Z. H., Duan, Y. Y., et al. (2008). Eur J Pharmacol, 590, 377–386. doi:10.1016/j.ejphar.2008.06.044.

    Article  CAS  Google Scholar 

  13. Li, W., Koike, K., Asada, Y., Yoshikawa, T., & Nikaido, T. (2005). J Mol Catal, B Enzym, 35(4–6), 117–121. doi:10.1016/j.molcatb.2005.06.006.

    Article  CAS  Google Scholar 

  14. Kuwajima, H., Shibano, N., Baba, T., Takaishi, K., Inoue, K., & Shingu, T. (1996). Phytochemistry, 41, 289–292. doi:10.1016/0031-9422(95)00525-0.

    Article  CAS  Google Scholar 

  15. Li, G. L., & Zhao, G. (2003). Chinese. J Org Chem, 23, 375–379.

    Google Scholar 

  16. Demirezer, L. Ö., Kuruüzüm-Uz, A., Bergere, I., Schiewe, H. J., & Zeeck, A. (2001). Phytochemistry, 58, 1213–1217. doi:10.1016/S0031-9422(01)00337-5.

    Article  CAS  Google Scholar 

  17. Xiang, L., Liu, X. H., Fan, G. Q., Cui, Y. X., Du, L. J., & Guo, D. A. (2005). Chinese Tradit Herbal Drugs, 36, 1306–1309.

    CAS  Google Scholar 

  18. Kamel, S., Brazier, M., Desmet, G., Fliniaux, M. A., & Jacquin-Dubreuil, A. (1992). Phytochemistry, 31, 1581–1583. doi:10.1016/0031-9422(92)83111-B.

    Article  CAS  Google Scholar 

  19. Zaalishvili, G. V., Khatisashvili, G. A., Ugrkhelidze, D. S., Gordeziani, M. S., & Kvesitadze, G. I. (2002). Applied Biochemistry and Microbiology, 6, 515–524.

    Google Scholar 

  20. Yan, C. Y., Zhang, Z., Yu, R. M., & Kong, L. Y. (2007). China J. Chinese Materia Medica, 32(3), 192–195.

    CAS  Google Scholar 

  21. Yan, C. Y., Yu, R. M., Zhang, Z., & Kong, L. Y. (2007). J Integr Plant Biol, 49, 207–212. doi:10.1111/j.1744-7909.2007.00400.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research work was financially supported by the Fund for Key Subjects of Ministry of Education of China (no. 104180) and Natural Sciences Fund of Guangdong (no. 31891). The authors thank Dongbo Yu at University of Texas Southwestern Medical Center, USA, for proof-reading our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W.L., Yan, C.Y., Zhu, J.H. et al. Biotransformation of Paeonol and Emodin by Transgenic Crown Galls of Panax quinquefolium . Appl Biochem Biotechnol 160, 1301–1308 (2010). https://doi.org/10.1007/s12010-009-8655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8655-3

Keywords

Navigation