Skip to main content
Log in

New Model for Polymerization of Oligomeric Alcohol Dehydrogenases into Nanoaggregates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polymerization and self-assembly of proteins into nanoaggregates of different sizes and morphologies (nanoensembles or nanofilaments) is a phenomenon that involved problems in various neurodegenerative diseases (medicine) and enzyme instability/inactivity (biotechnology). Thermal polymerization of horse liver alcohol dehydrogenase (dimeric) and yeast alcohol dehydrogenase (tetrameric), as biotechnological ADH representative enzymes, was evaluated for the development of a rational strategy to control aggregation. Constructed ADH nuclei, which grew to larger amorphous nanoaggregates, were prevented via high repulsion strain of the net charge values. Good correlation between the variation in scattering and λ −2 was related to the amorphousness of the nanoaggregated ADHs, shown by electron microscopic images. Scattering corrections revealed that ADH polymerization was related to the quaternary structural changes, including delocalization of subunits without unfolding, i.e. lacking the 3D conformational and/or secondary-ordered structural changes. The results demonstrated that electrostatic repulsion was not only responsible for disaggregation but also caused a delay in the onset of aggregation temperature, decreasing maximum values of aggregation and amounts of precipitation. Together, our results demonstrate and propose a new model of self-assembly for ADH enzymes based on the construction of nuclei, which grow to formless nanoaggregates with minimal changes in the tertiary and secondary conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Burdette, D. S., Tchernajencko, V., & Zeikus, J. G. (2000). Enzyme and Microbial Technology, 27, 11–18. doi:10.1016/S0141-0229(00)00192-7.

    Article  CAS  Google Scholar 

  2. Jörnvall, H., Persson, B., & Jeffery, J. (1987). European Journal of Biochemistry, 167, 195–201. doi:10.1111/j.1432-1033.1987.tb13323.x.

    Article  Google Scholar 

  3. Niefind, K., Müller, J., Riebel, B., Hummel, W., & Schomburg, D. (2003). Journal of Molecular Biology, 327, 317–328. doi:10.1016/S0022-2836(03)00081-0.

    Article  CAS  Google Scholar 

  4. Adolph, H. W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V., et al. (2000). Biochemistry, 39, 12885–12897. doi:10.1021/bi001376s.

    Article  CAS  Google Scholar 

  5. Saliola, M., Shuster, M., Jr., & Falcone, C. (1990). Yeast (Chichester, England), 6, 193–204. doi:10.1002/yea.320060304.

    Article  CAS  Google Scholar 

  6. Williamson, V. M., & Paquin, C. E. (1987). Molecular & General Genetics, 209, 374–381. doi:10.1007/BF00329668.

    Article  CAS  Google Scholar 

  7. Reid, M. F., & Fewson, C. A. (1994). Critical Reviews in Microbiology, 20, 13–56. doi:10.3109/10408419409113545.

    Article  CAS  Google Scholar 

  8. Lortie, R., Fassouane, A., Laval, J. M., & Bourdillon, C. (1992). Biotechnology and Bioengineering, 39, 157–163. doi:10.1002/bit.260390206.

    Article  CAS  Google Scholar 

  9. Whitesides, G. M., & Wong, C. H. (1985). Angewandte Chemie & Angewandte Chemie International Edition in English, 24, 617–638. doi:10.1002/anie.198506173.

    Article  Google Scholar 

  10. Simon, H., Bader, J., Gunther, H., Neumann, S., & Thanos, J. (1985). Angewandte Chemie International Edition in English, 24, 539–553. doi:10.1002/anie.198505391.

    Article  Google Scholar 

  11. Irwin, J. B., Lok, K. P., Huang, K. W. C., & Jones, J. B. (1978). Journal of the Chemical Society Perkin. I, 12, 1636–1641.

    Article  CAS  Google Scholar 

  12. Hummel, W., & Kukla, M. R. (1989). European Journal of Biochemistry, 184, 1–13. doi:10.1111/j.1432-1033.1989.tb14983.x.

    Article  CAS  Google Scholar 

  13. Danielsson, O., & Jcrnvall, H. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 9247–9251. doi:10.1073/pnas.89.19.9247.

    Article  CAS  Google Scholar 

  14. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisan, J. M., Fernandez-Lafuente, R., & Mateo, C. (2006). Journal of Biotechnology, 125, 85–94. doi:10.1016/j.jbiotec.2006.01.028.

    Article  CAS  Google Scholar 

  15. Horwitz, J. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 10449–10453. doi:10.1073/pnas.89.21.10449.

    Article  CAS  Google Scholar 

  16. Guha, S., Manna, T. K., Das, K. P., & Bhattacharyya, B. (1998). Journal of Biological Chemistry, 273, 30077–30080. doi:10.1074/jbc.273.46.30077.

    Article  CAS  Google Scholar 

  17. Clark, J., & Huang, Q. L. (1996). National Academy Science USA, 93, 15185–15189. doi:10.1073/pnas.93.26.15185.

    Article  CAS  Google Scholar 

  18. Miroliaei, M., & Nemat-Gorgani, M. (2002). The International Journal of Biochemistry & Cell Biology, 34, 169–175. doi:10.1016/S1357-2725(01)00109-1.

    Article  CAS  Google Scholar 

  19. Barzegar, A., Yousefi, R., Sharifzadeh, A., Dalgalarrondo, M., Chobert, J. M., Ganjali, M. R., et al. (2008). International Journal of Biological Macromolecules, 42, 392–399. doi:10.1016/j.ijbiomac.2008.01.008.

    Article  CAS  Google Scholar 

  20. Calamai, M., Taddei, N., Stefani, M., Ramponi, G., & Chiti, F. (2003). Biochemistry, 42, 15078–15083. doi:10.1021/bi030135s.

    Article  CAS  Google Scholar 

  21. Hashemnia, S., Moosavi-Movahedi, A. A., Ghourchian, H., Ahmad, F., Hakimelahi, G. H., & Saboury, A. A. (2006). International Journal of Biological Macromolecules, 40, 47–53. doi:10.1016/j.ijbiomac.2006.05.011.

    Article  CAS  Google Scholar 

  22. Manning, M. C., Matsuura, J. E., Kendrick, B. S., Meyer, J. D., Dormish, J. J., Vrkljan, M., et al. (1995). Biotechnology and Bioengineering, 48, 506–512. doi:10.1002/bit.260480513.

    Article  CAS  Google Scholar 

  23. Barzegar, A., Moosavi-Movahedi, A. A., Mahnam, K., Bahrami, H., & Sheibani, N. (2008). Journal of Peptide Science, 14, 1173–1182. doi:10.1002/psc.1055.

    Article  CAS  Google Scholar 

  24. Pace, C. N., Alston, R. W., & Shaw, K. L. (2000). Protein Science, 9, 1395–1398. doi:10.1110/ps.9.7.1395.

    Article  CAS  Google Scholar 

  25. Hoppe, W., Lohmann, W., & Markl, H. (1982). & Ziegler, H. Springer, New York: Biophysics.

    Google Scholar 

  26. Cantor, C. R., Schimmel, P. R., & Part, W. H., II. (1980). Biophysical Chemistry. NewYork: Freeman.

    Google Scholar 

  27. Barzegar, A., Moosavi-Movahedi, A. A., Rezaei-Zarchi, S., Saboury, A. A., Ganjali, M. R., Norouzi, P., et al. (2008). Biotechnology and Applied Biochemistry, 49, 203–211. doi:10.1042/BA20070031.

    Article  CAS  Google Scholar 

  28. Camerini-Otero, R. D., & Day, L. A. (1978). Biopolymers, 17, 2241–2249. doi:10.1002/bip. 1978.360170916.

    Article  CAS  Google Scholar 

  29. Sund, H., & Theorell, H. (1963). Alcohol Dehydrogenases. In P. Boyer, H. Lardy & K. Myrback (Eds.), The Enzymes (25 pp) (2nd ed., Vol. VII). New York: Academic.

    Google Scholar 

  30. Ehrenberg, A., & Dalziel, K. (1958). Acta Chemica Scandinavica, 12, 465–469. doi:10.3891/acta.chem.scand.12-0465.

    Article  CAS  Google Scholar 

  31. Li, H., Robertson, A. D., & Jensen, J. H. (2005). Proteins, 61, 704–721. doi:10.1002/prot.20660.

    Article  CAS  Google Scholar 

  32. Srisailam, S., Kumar, T. K. S., Srimathi, T., & Yu, C. (2002). Journal of the American Chemical Society, 124, 1884–1888. doi:10.1021/ja012070r.

    Article  CAS  Google Scholar 

  33. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., et al. (2005). Journal of Biological Chemistry, 280, 5892–5901. doi:10.1074/jbc.M404751200.

    Article  CAS  Google Scholar 

  34. Stigter, D., & Dill, K. A. (1990). Biochemistry, 29, 1262–1271. doi:10.1021/bi00457a023.

    Article  CAS  Google Scholar 

  35. Otzen, D. E., Knudsen, B. R., Aachmann, F., Larsen, K. L., & Wimmer, R. (2002). Protein Science, 11, 1779–1787. doi:10.1110/ps.0202702.

    Article  CAS  Google Scholar 

  36. Amani, M., Moosavi-Movahedi, A. A., Floris, G., Longu, S., Mura, A., Moosavi-Nejad, S. Z., et al. (2005). The Protein Journal, 24, 7842–7845. doi:10.1007/s10930-005-7842-5.

    Article  Google Scholar 

  37. Poltorak, O. M., Chukhray, E. S., & Torshin, I. Y. (1998). Biochemistry. Biokhimiia, 63, 303–311.

    CAS  Google Scholar 

  38. Poltorak, O. M., Chukhray, E. S., Torshin, I. Y., Atyaksheva, L. F., Trevan, M. D., & Chaplin, M. F. (1999). Journal of Molecular Catalysis. B, Enzymatic, 7, 165–172.

    Article  CAS  Google Scholar 

  39. Poltorak, O. M., Chukhray, E. S., Kozlenkov, A. A., Chaplin, M. F., & Trevan, M. D. (1999). Journal of Molecular Catalysis. B, Enzymatic, 7, 157–163.

    Article  CAS  Google Scholar 

  40. Hassanisadi, M., Barzegar, A., Yousefi, R., Dalgalarrondo, M., Chobert, J. M., Haertle, T., et al. (2008). Analytica Chimica Acta, 613, 40–47. doi:10.1016/j.aca.2008.02.036.

    Article  CAS  Google Scholar 

  41. Speed, M. A., King, J., & Wang, D. I. C. (1997). Biotechnology and Bioengineering, 54, 333–343. doi:10.1002/(SICI)1097-0290(19970520)54:4<333::AID-BIT6>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  42. Brown, P. H., & Schuck, P. (2006). Biophysical Journal, 90, 4651–4661. doi:10.1529/biophysj.106.081372.

    Article  CAS  Google Scholar 

  43. Tsai, A. M., Van Zanten, J. H., & Betenbaugh, M. J. (1998). Biotechnology and Bioengineering, 59, 273–280. doi:10.1002/(SICI)1097-0290(19980805)59:3<273::AID-BIT2>3.0.CO;2-8.

    Article  CAS  Google Scholar 

  44. Tsai, A. M., Van Zanten, J. H., & Betenbaugh, M. J. (1998). Biotechnology and Bioengineering, 59, 281–285. doi:10.1002/(SICI)1097-0290(19980805)59:3<281::AID-BIT3>3.0.CO;2-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports of Research Institute for Fundamental Sciences (RIFS), University of Tabriz; Research Council of the University of Tehran; Iran National Science Foundation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Moosavi-Movahedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzegar, A., Moosavi-Movahedi, A.A., Kyani, A. et al. New Model for Polymerization of Oligomeric Alcohol Dehydrogenases into Nanoaggregates. Appl Biochem Biotechnol 160, 1188–1205 (2010). https://doi.org/10.1007/s12010-009-8646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8646-4

Keywords

Navigation