Skip to main content

Advertisement

Log in

The New Application of Biosorption Properties of Enteromorpha prolifera

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The main goal of this paper was to elaborate the possibility of industrial application of biosorption properties of Enteromorpha prolifera (production of mineral feed additives for livestock). In this study, biosorption process was used in the binding of chromium(III) ions from aqueous solution by the green macroalga. The kinetics of biosorption process was studied in a batch system with respect to the initial pH, temperature, initial metal ion concentration, and initial biomass concentration. E. prolifera demonstrated good biosorption properties. The equilibrium biosorption capacity increased with pH and with initial concentration of metal ions. The uptake of chromium(III) ions by the dried alga was affected by the temperature, but in small extent. With increase of the biomass concentration, the decrease of biosorption capacity at equilibrium was observed. The best biosorption conditions were determined as the initial pH 5, temperature 25 °C, the initial chromium(III) ions concentration 400 mg/L, and biosorbent concentration 1.0 g/L. Biosorption capacity at equilibrium reached at these conditions was 100 mg/g. The mechanism of the biosorption of chromium(III) ions by E. prolifera was analyzed in equilibrium experiments. Equilibrium data were fitted to Langmuir, Dubinin–Radushkevich, and Freundlich adsorption isotherms. The most suitable model for describing the obtained data was Langmuir model. The experimental results and the analysis of the solution before and after biosorption process suggested ion-exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jensen, A. (1993). Hydrobiologia, 260/261, 15–23. doi:10.1007/BF00048998.

    Article  Google Scholar 

  2. Pliński, M., Florczyk, I., & Galińska, M. (1988). Kieler Meeresforschungen. Sonderheft, 6, 265–271.

    Google Scholar 

  3. Nisizawa, K., Noda, H., Kikuchi, R., & Watanabe, T. (1987). Hydrobiologia, 151/152, 5–29. doi:10.1007/BF00046102.

    Article  Google Scholar 

  4. Hou, X., & Yan, X. (1998). The Science of the Total Environment, 222, 141–156. doi:10.1016/S0048-9697(98)00299-X.

    Article  CAS  Google Scholar 

  5. Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Domínguez, S., González-Acosta, B., & Pérez-Gil, F. (2005). Journal of Food Composition and Analysis, 18, 79–88. doi:10.1016/j.jfca.2003.12.012.

    Article  CAS  Google Scholar 

  6. Özer, A., Gürbüz, G., Çalimli, A., & Körbahti, B. K. (2008). Journal of Hazardous Materials, 152, 778–788. doi:10.1016/j.jhazmat.2007.07.088.

    Article  Google Scholar 

  7. McDermid, K. J., & Stuercke, B. (2003). Journal of Applied Phycology, 15, 513–524. doi:10.1023/B:JAPH.0000004345.31686.7f.

    Article  CAS  Google Scholar 

  8. Poole, L. J., & Raven, J. A. (1997). Progress in Phycological Research, 17, 1–148.

    Google Scholar 

  9. Mamatha, B. S., Namitha, K. K., Senthil, A., Smitha, J., & Ravishankar, G. A. (2007). Food Chemistry, 101, 1707–1713. doi:10.1016/j.foodchem.2006.04.032.

    Article  CAS  Google Scholar 

  10. Bimalendu, R. (2006). Carbohydrate Polymers, 66, 408–416. doi:10.1016/j.carbpol.2006.03.027.

    Article  Google Scholar 

  11. Lahaye, M., Ray, B., Baumberger, S., Quemener, B., & Axelos, M. A. V. (1996). Hydrobiologia, 326/327, 473–480. doi:10.1007/BF00047848.

    Article  CAS  Google Scholar 

  12. Venkata Raman, B., Rao, D. N., & Radhakrishnan, T. M. (2004). Indian Journal of Clinical Biochemistry, 19, 105–109. doi:10.1007/BF02872402.

    Article  Google Scholar 

  13. Podbielkowski, Z. (1978). Glony. Warsaw: Wydawnictwo Szkolne i Pedagogiczne.

    Google Scholar 

  14. Haroon, A. M., Szaniawska, A., Normant, M., & Janas, U. (2000). Oceanologia, 42, 19–28.

    Google Scholar 

  15. Szefer, P., & Skwarzec, B. (1988). Oceanologia, 25, 87–98.

    Google Scholar 

  16. Żbikowski, R., Szefer, P., & Latała, A. (2006). Environmental Pollution, 143, 435–448. doi:10.1016/j.envpol.2005.12.007.

    Article  Google Scholar 

  17. Mabeau, S., & Fleurence, J. (1993). Trends in Food Science & Technology, 4, 103–107. doi:10.1016/0924-2244(93)90091-N.

    Article  CAS  Google Scholar 

  18. Directive of Polish Minister of Agriculture and Rural Development. (2003). Act on resources of animal feeding. Journal of Laws, No. 29, Item 243.

  19. McHugh, D. J. (2003). FAO Fisheries Technical Paper, 441, 1–105.

    Google Scholar 

  20. Oswald, W. J., & Gotaas, H. B. (1957). Transactions of the American Society of Civil Engineers, 122, 73–105.

    Google Scholar 

  21. Volesky, B. (1990). Biosorption and biosorbents. In B. Volesky (Ed.), Biosorption of heavy metals. Boca Raton: CRC.

    Google Scholar 

  22. Pessôa de França, F., Pinto Padilha, F., & da Costa, A. C. A. (2006). Applied Biochemistry and Biotechnology, 128, 23–32. doi:10.1385/ABAB:128:1:023.

    Article  Google Scholar 

  23. Özer, A., Akkaya, G., & Turabik, M. (2005). Chemical Engineering Journal, 112, 181–190. doi:10.1016/j.cej.2005.07.007.

    Article  Google Scholar 

  24. Özer, A., Akkaya, G., & Turabik, M. (2005). Journal of Hazardous Materials B, 126, 119–127. doi:10.1016/j.jhazmat.2005.06.018.

    Article  Google Scholar 

  25. Hernández, I., Fernández-Engo, M. A., Pérez-Lloréns, J. L., & Vergara, J. J. (2005). Journal of Applied Phycology, 17, 557–567. doi:10.1007/s10811-005-9006-6.

    Article  Google Scholar 

  26. Deviller, G., Aliaume, C., Nava, M. A. F., Casellas, C., & Blancheton, J. P. (2004). Aquaculture (Amsterdam, Netherlands), 235, 331–344. doi:10.1016/j.aquaculture.2004.01.023.

    Article  Google Scholar 

  27. Vincent, J. B. (2001). Polyhedron, 20, 1–26. doi:10.1016/S0277-5387(00)00624-0.

    Article  CAS  Google Scholar 

  28. N.R.C. (1997). The role of chromium in animal nutrition. Washington, DC: National Academy.

    Google Scholar 

  29. Chojnacka, K. (2007). World Journal of Microbiology & Biotechnology, 23, 1139–1147. doi:10.1007/s11274-006-9344-9.

    Article  CAS  Google Scholar 

  30. Michalak, I., Zielińska, A., Chojnacka, K., & Matuła, J. (2007). American Journal of Agricultural and Biological Science, 2, 284–290.

    Article  Google Scholar 

  31. Ho, Y. S., & McKay, G. (1999). Process Biochemistry, 34, 451–465. doi:10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  32. Yongnian, N., Shouhui, C., & Serge, K. (2002). Analytica Chimica Acta, 46, 305–316.

    Google Scholar 

  33. Chojnacka, K. (2006). Talanta, 70, 966–972. doi:10.1016/j.talanta.2006.05.063.

    Article  CAS  Google Scholar 

  34. Aksu, Z. (2001). Separation and Purification Technology, 21, 285–294. doi:10.1016/S1383-5866(00)00212-4.

    Article  CAS  Google Scholar 

  35. Kumar, K. V., Sivanesan, S., & Ramamurthi, V. (2005). Process Biochemistry, 40, 2865–2872. doi:10.1016/j.procbio.2005.01.007.

    Article  CAS  Google Scholar 

  36. Michalak, I., Chojnacka, K., Richter, D., Pietryka, M., & Matuła, J. (2006). Na pograniczu chemii i biologii. WN UAM in Poznan, 16, 107–116. in Polish.

    Google Scholar 

  37. Yun, Y. S., Park, D., Park, J. M., & Volesky, B. (2001). Environmental Science & Technology, 35, 4353–4358. doi:10.1021/es010866k.

    Article  CAS  Google Scholar 

  38. Dönmez, G. Ç., Aksu, Z., Öztürk, A., & Kutsal, T. (1999). Process Biochemistry, 34, 885–892. doi:10.1016/S0032-9592(99)00005-9.

    Article  Google Scholar 

  39. Yunus Pamukoglu, M., & Kargi, F. (2007). Enzyme and Microbial Technology, 42, 76–82. doi:10.1016/j.enzmictec.2007.08.004.

    Article  Google Scholar 

  40. Tobin, J. M., Cooper, D. G., & Neufeld, R. J. (1984). Applied and Environmental Microbiology, 47, 821–824.

    CAS  Google Scholar 

  41. Kannan, N., & Sundaram, M. M. (2001). Dyes Pigm, 51, 25–40. doi:10.1016/S0143-7208(01)00056-0.

    Article  CAS  Google Scholar 

  42. Langmuir, I. (1918). Journal of the American Chemical Society, 40, 1361–1403. doi:10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  43. McKay, G., Blair, H. S., & Gardner, J. R. (1984). Journal of Applied Polymer Science, 29, 1499–1514. doi:10.1002/app. 1984.070290504.

    Article  CAS  Google Scholar 

  44. Freundlich, H. (1907). Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  45. Dubinin, M. M., & Raduskhevich, L. V. (1947). Proceedings of the Academy of Sciences of the USSR. Physical Chemistry Section, 55, 327–329.

    CAS  Google Scholar 

  46. Hasany, S. M., & Chaudhary, M. H. (1996). Applied Radiation and Isotopes, 47, 467–471. doi:10.1016/0969-8043(95)00310-X.

    Article  CAS  Google Scholar 

  47. Helfferich, F. (1962). Ion exchange. New York: McGraw-Hill.

    Google Scholar 

  48. Onyango, M. S., Kojima, Y., Aoyi, O., Bernardo, E. C., & Matsuda, H. (2004). Journal of Colloid and Interface Science, 279, 341–350. doi:10.1016/j.jcis.2004.06.038.

    Article  CAS  Google Scholar 

  49. Directive of Polish Minister of Agriculture and Rural Development. (2004). with further changes (2005). Acceptable amounts of undesirable substances in fodders. Journal of Laws, No. 162, Item 1704 and Journal of Laws, No. 151, Item 1267.

  50. Commission Directive 2003/100/EC of 31 October 2003 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed, L 285/33.

  51. Jamroz, D., Podkówka, W., & Chachułowa, J. (2004). Żywienie zwierząt i paszoznawstwo. Warsaw: PWN.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Ministry of Science and Higher Education (No. R05 014 01). We would also like to thank Professor Jan Matuła, Dr. Dorota Richter, and Dr. Mirosława Pietryka from the Department of Botany and Plant Ecology of the Wrocław University of Environmental and Life Sciences for identification of the alga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Michalak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalak, I., Chojnacka, K. The New Application of Biosorption Properties of Enteromorpha prolifera . Appl Biochem Biotechnol 160, 1540–1556 (2010). https://doi.org/10.1007/s12010-009-8635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8635-7

Keywords

Navigation