Skip to main content
Log in

Expression and Characterization of the Dictyoglomus thermophilum Rt46B.1 Xylanase Gene (xynB) in Bacillus subtilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To obtain extracellular and high-level expression of the Dictyoglomus thermophilum Rt46B.1 xylanase B gene, this gene was integrated into the α-amylase gene site of a host strain of Bacillus subtilis WB800. The extreme thermophile xylanase gene was successfully integrated and expressed in the host, measured at 24 ± 0.4 XUs/mL in the Luria broth medium supernatant. The recombinant enzyme was purified by ammonium sulfate precipitation, anion exchange chromatography, and gel filtration. The molecular mass and pI value of xylanase were estimated to be 24 kDa and 4.3, respectively. The optimal pH level and temperature of the purified enzyme were 6.5 and 85 °C, respectively. Xylanase showed reasonable activity at temperatures up to 95 °C and remained stable at 4 °C for 1 week. The purified enzyme retained most of its activity in 1 mM ethylenediaminetetraacetic acid or dithiothreitol and 0.1% Tween-20 or Triton X-100. However, strong inhibition was observed in the presence of 5 mM Mn2+, 0.5% sodium dodecyl sulfate, Tween-20, or Triton X-100; a strong stimulating effect was also observed in the presence of Fe2+. The K m and V max values of the recombinant xylanase for birchwood xylan were calculated to be 2.417 ± 0.36 mg/mL and 325 ± 41 µmol/min mg, respectively. Xylanase was found to be useful in the prebleaching process of paper pulps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biely, P. (1985). Trends in Biotechnology, 3, 286–290. doi:10.1016/0167-7799(85)90004-6.

    Article  CAS  Google Scholar 

  2. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23. doi:10.1016/j.femsre.2004.06.005.

    Article  CAS  Google Scholar 

  3. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338. doi:10.1007/s002530100704.

    Article  CAS  Google Scholar 

  4. Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64. doi:10.1080/07388550290789450.

    Article  CAS  Google Scholar 

  5. Yin, Y. L., Baidoo, S. K., Jin, L. Z., Liu, Y. G., Schulze, H., & Simmins, P. H. (2001). Livestock Production Science, 71, 109–120. doi:10.1016/S0301-6226(01)00215-9.

    Article  Google Scholar 

  6. Kantelinen, A., Rantanen, T., Buchert, J., & Vikari, L. (1993). Journal of Biotechnology, 28, 219–228. doi:10.1016/0168-1656(93)90171-I.

    Article  CAS  Google Scholar 

  7. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). FEMS Microbiology Reviews, 13, 335–350. doi:10.1111/j.1574-6976.1994.tb00053.x.

    Article  CAS  Google Scholar 

  8. Prade, R. A. (1996). Biotechnology & Genetic Engineering Reviews, 13, 101–131.

    CAS  Google Scholar 

  9. Georis, J., Giannotta, F., Buyl, E. D., Granier, B., & Frere, J. M. (2000). Enzyme and Microbial Technology, 26, 178–186. doi:10.1016/S0141-0229(99)00141-6.

    Article  CAS  Google Scholar 

  10. Haarhoff, J., Moes, C. J., Cerff, C., Wyk, W. J. V., Gerischer, G., & Janse, B. J. H. (1999). Biotechnology Letters, 21, 415–420.

    CAS  Google Scholar 

  11. Ximenes, F. A., Sousa, M. V., Puls, J., Silva, F. G., & Filho, E. X. F. (1999). Current Microbiology, 38, 18–21. doi:10.1007/PL00006765.

    Article  CAS  Google Scholar 

  12. Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456. doi:10.1111/j.1574-6976.1999.tb00407.x.

    Article  CAS  Google Scholar 

  13. Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Microbiology and Molecular Biology Reviews, 64, 461–488. doi:10.1128/MMBR.64.3.461-488.2000.

    Article  CAS  Google Scholar 

  14. Singh, S., Madlala, A. M., & Prior, B. A. (2003). FEMS Microbiology Reviews, 27, 3–16. doi:10.1016/S0168-6445(03)00018-4.

    Article  CAS  Google Scholar 

  15. Dhillon, A., Gupta, J. K., Jauhari, B. M., & Khanna, S. (2000). Bioresource Technology, 73, 273–277. doi:10.1016/S0960-8524(99)00116-9.

    Article  CAS  Google Scholar 

  16. Lama, L., Calandrelli, V., Gambacorta, A., & Nicolaus, B. (2004). Research in Microbiology, 155, 283–289. doi:10.1016/j.resmic.2004.02.001.

    Article  CAS  Google Scholar 

  17. Reeves, R. A., Gibbs, M. D., Morris, D. D., Griffiths, K. R., Saul, D. J., & Bergquist, P. L. (2000). Applied and Environmental Microbiology, 66, 1532–1537. doi:10.1128/AEM.66.4.1532-1537.2000.

    Article  CAS  Google Scholar 

  18. Winterhalter, C., & Liebl, W. (1995). Applied and Environmental Microbiology, 61(5), 1810–1815.

    CAS  Google Scholar 

  19. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  20. Anagnostopoulos, C., & Spizizen, J. (1961). Journal of Bacteriology, 81, 741–746.

    CAS  Google Scholar 

  21. Shimotsu, H., & Henner, D. J. (1986). Gene, 43, 85–94. doi:10.1016/0378-1119(86)90011-9.

    Article  CAS  Google Scholar 

  22. Lever, M. (1973). Biochemical Medicine, 7, 274–281. doi:10.1016/0006-2944(73)90083-5.

    Article  CAS  Google Scholar 

  23. Baily, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270. doi:10.1016/0168-1656(92)90074-J.

    Article  Google Scholar 

  24. Shah, A. R., & Madamwar, D. (2005). Process Biochemistry, 40, 1763–1771. doi:10.1016/j.procbio.2004.06.041.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  26. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Analytical Biochemistry, 150, 76–85. doi:10.1016/0003-2697(85)90442-7.

    Article  CAS  Google Scholar 

  27. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 57, 685–66.

    Google Scholar 

  28. Morris, D. D., Gibbs, M. D., Chin, C. W., Koh, M. H., Wong, K. Y., Allison, R. W., et al. (1998). Applied and Environmental Microbiology, 64, 1759–1765.

    CAS  Google Scholar 

  29. Charles, C. L., Rena, E. K., Michael, R. S., Kurt, W., William, J. O., & Dominic, W. S. W. (2008). Current Microbiology, 57, 301–305. doi:10.1007/s00284-008-9193-x.

    Article  Google Scholar 

  30. Gessesse, A. (1998). Applied and Environmental Microbiology, 64, 3533–3535.

    CAS  Google Scholar 

  31. Johnvesly, B., Virupakshi, S., Patil, G.N., Ramalingam, & Naik, G.R. (2002). J of Microbiology and Biotechnology, 12, 153–156.

Download references

Acknowledgements

This work was financially supported by the High Technology Foundation (200515124) of Xinjiang Province, People's Republic of China. We thank Dr Satoshi Nakamula and Dr. Xing Xin-hui for providing the material of integration vector pDG364 and the plasmid of pET-xynB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Lou, K. & Li, G. Expression and Characterization of the Dictyoglomus thermophilum Rt46B.1 Xylanase Gene (xynB) in Bacillus subtilis . Appl Biochem Biotechnol 160, 1484–1495 (2010). https://doi.org/10.1007/s12010-009-8634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8634-8

Keywords

Navigation