Skip to main content

Advertisement

Log in

Media Preparation Using Tuna-Processing Wastes for Improved Lipase Production by Shrimp Gut Isolate Staphylococcus epidermidis CMST Pi 2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular lipase production by Staphylococcus epidermidis CMST Pi 2 isolated from the intestine of shrimp Penaeus indicus has been investigated in shake-flask experiment using different preparations of tuna-processing waste such as raw fish meat, defatted fish meat, alkali hydrolysate, and acid hydrolysate as nitrogen source. Among the tested tuna preparations, defatted fish meat supported the maximum lipase production, and 2.5% concentration of the same was found to be optimum for maximizing the lipase production. The effect of carbon sources on lipase production revealed that glucose aided the higher lipase production than any other tested carbon source and a concentration of 2% glucose registered as optimum to enhance the lipase production. The halotolerancy of S. epidermidis CMST Pi 2 for lipase production indicated that 4% of sodium chloride was optimum to yield maximum lipase. Among the surfactants tested, lipase production was high in Tween 20 added medium when compared to other surfactants, and its optimum concentration recorded was 0.8%. Partial characterization of crude enzyme revealed that pH 7 and 55 °C temperature were optimum for maximum lipase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Godtfredsen, S. E. (1990). Microbial lipases. In W. M. Fogarty & C. T. Kelly (Eds.), Microbial enzymes and biotechnology (pp. 255–273). Amsterdam: Elsevier.

    Google Scholar 

  2. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Biotechnology Advances, 19, 627–662. doi:10.1016/S0734-9750(01)00086-6.

    Article  CAS  Google Scholar 

  3. Ellouz, Y. T., Ghorbel, B., Souissi, N., Kammoun, S., & Nasri, M. (2003). World Journal of Microbiology & Biotechnology, 19, 41–45. doi:10.1023/A:1022549517421.

    Article  Google Scholar 

  4. Raa, J., & Gilberg, A. (1982). CRC Critical Reviews in Food Science and Nutrition, 16, 383–419.

    Article  CAS  Google Scholar 

  5. Dufosse, L., La Broise, D. D., & Guerard, F. (2001). Current Microbiology, 42, 32–38. doi:10.1007/s002840010174.

    Article  CAS  Google Scholar 

  6. Musantra, A. (1992). Applied Microbiology and Biotechnology, 38, 61–66.

    Google Scholar 

  7. Gao, M. T., Hirata, M., Toorisaka, E., & Hano, T. (2006). Bioresource Technology, 97, 2414–2420.

    CAS  Google Scholar 

  8. Batista, I. (1999). European Journal of Food Research Technology, 210, 84–89. doi:10.1007/s002170050539.

    Article  CAS  Google Scholar 

  9. A.O.A.C. (1980). Official methods of analysis (13th ed.). Washington, DC: Association of Official Agricultural Chemists.

    Google Scholar 

  10. Folch, J., Ees, M. I., & Slone Staneley, G. H. (1957). The Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  11. Ghorbel, S., Soussi, N., Ellouz, Y. T., Duffosse, L., Guerard, F., & Nazri, M. (2005). World Journal of Microbiology & Biotechnology, 21, 33–38. doi:10.1007/s11274-004-1556-2.

    Article  CAS  Google Scholar 

  12. Ellouz, Y. T., Bayoudh, A., Kammoun, S., Gharsallah, N., & Nasri, M. (2001). Bioresource Technology, 80, 40–51. doi:10.1016/S0960-8524(01)00057-8.

    Article  Google Scholar 

  13. Souissi, N., Ellouz, Y. T., Bougatef, A., Blibech, M., & Nasri, M. (2008). Microbiological Research, 163, 473–480. doi:10.1016/j.micres.2006.07.013.

    Article  CAS  Google Scholar 

  14. Bancerz, R., Ginalska, G., Fiedurek, J., & Gromada, A. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 253–260. doi:10.1007/s10295-005-0235-0.

    Article  CAS  Google Scholar 

  15. Dharmsthiti, S., & Kuhasuntisuk, B. (1998). Journal of Industrial Microbiology & Biotechnology, 21, 75–80. doi:10.1038/sj.jim.2900563.

    Article  CAS  Google Scholar 

  16. Lin, E. S., & Ko, H. C. (2005). Enzyme and Microbial Technology, 37, 261–265. doi:10.1016/j.enzmictec.2005.03.012.

    Article  CAS  Google Scholar 

  17. Abdul Rahman, R. N. Z. R., Baharum, S. N., Salleh, A. B., & Basri, M. (2006). Journal of Microbiology (Seoul, Korea), 44(6), 583–590.

    CAS  Google Scholar 

  18. Babu, J., Ramteke, P. W., & Pa Ashok, Kumar. (2006). Journal of General and Applied Microbiology, 52(6), 315–320. doi:10.2323/jgam.52.315.

    Article  Google Scholar 

  19. Boutaiba, S., Bhatnagar, T., Hacene, H., Mitchell, D. A., & Baratti, J. C. (2006). Journal of Molecular Catalysis. B, Enzymatic, 41, 21–26. doi:10.1016/j.molcatb.2006.03.010.

    Article  CAS  Google Scholar 

  20. Martin, S., Marquez, M. C., Sanchez-Porro, C., Mellado, E., Arahal, D. R., & Ventosa, A. (2003). International Journal of Systematic and Evolutionary Microbiology, 53, 1383–1387. doi:10.1099/ijs.0.02528-0.

    Article  CAS  Google Scholar 

  21. Joshi, A. A., Kanekar, P. P., Kelkar, A. S., Sarnaik, S. S., Shouche, Y., & Wani, A. (2007). Journal of Basic Microbiology, 47(3), 213–221. doi:10.1002/jobm.200610223.

    Article  CAS  Google Scholar 

  22. Alberto, D., Deive, F. J., Sanroman, A., & Longo, M. A. (2003). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 78, 1166–1170. doi:10.1002/jctb.922.

    Article  Google Scholar 

  23. Johri, B. N., Alurralde, J. D., & Klien, J. (1990). Applied Microbiology and Biotechnology, 33, 367–371. doi:10.1007/BF00176648.

    Article  CAS  Google Scholar 

  24. Dharmsthiti, S., Pratuangdejkul, J., Theeragool, G., & Luchai, S. (1998). The Journal of General and Applied Microbiology, 44, 139–145. doi:10.2323/jgam.44.139.

    Article  CAS  Google Scholar 

  25. Bancerz, R., & Ginalska, G. (2007). Journal of Industrial Microbiology & Biotechnology, 34(8), 553–560. doi:10.1007/s10295-007-0232-6.

    Article  CAS  Google Scholar 

  26. Hoshino, T., Ishizaki, K., Sakamoto, T., Kumeta, H., Yumoto, I., Matsuyama, H., et al. (1997). Letters in Applied Microbiology, 25, 70–72. doi:10.1046/j.1472-765X.1997.00183.x.

    Article  CAS  Google Scholar 

  27. Ginalska, G., Bancerz, R., & Korniłłowicz-Kowalska, T. (2004). Journal of Industrial Microbiology & Biotechnology, 31, 177–182. doi:10.1007/s10295-004-0134-9.

    Article  CAS  Google Scholar 

  28. Falony, G., Armas, J. C., Dustet Mendoza, J. C., & Hernández, J. L. M. (2006). Food Technology and Biotechnology, 44(2), 235–240.

    CAS  Google Scholar 

  29. Prazeres, J. N. D., Bortollotti Cruz, J. A., & Pastore, G. M. (2006). Brazilian Journal of Microbiology, 37, 505–509. doi:10.1590/S1517-83822006000400019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palavesam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esakkiraj, P., Austin Jeba Dhas, G., Palavesam, A. et al. Media Preparation Using Tuna-Processing Wastes for Improved Lipase Production by Shrimp Gut Isolate Staphylococcus epidermidis CMST Pi 2. Appl Biochem Biotechnol 160, 1254–1265 (2010). https://doi.org/10.1007/s12010-009-8632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8632-x

Keywords

Navigation