Skip to main content
Log in

Improvement of Aspergillus sulphureus Endo-β-1,4-Xylanase Expression in Pichia pastoris by Codon Optimization and Analysis of the Enzymic Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The gene xynB from Aspergillus sulphureus encoding the endo-β-1,4-xylanase was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA and wild-type DNA were placed under the control of a glyceraldehyde-3-phosphate dehydrogenase gene promoter (GAP) in the constitutive expression vector plasmid pGAPzαA and electrotransformed into the P. pastoris X-33 strain, respectively. The transformants screened by Zeocin were able to constitutively secrete the xylanase in YPD liquid medium. The maximum yield of the recombinant xylanase produced by the synthetic DNA was 105 U ml−1, which was about 5-fold higher than that by wild-type DNA under the flask culture at 28 °C for 3 days. The enzyme showed optimal activity at 50 °C and pH 5.0. The residual activity remained above 90% after the recombinant xylanase was pretreated in Na2HPO4–citric acid buffer (pH 2.4) for 2 h. The xylanase activity was significantly improved by Zn2+. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh, S., Madlala, A. M., & Prior, B. A. (2003). FEMS Microbiology Reviews, 27, 3–16. doi:10.1016/S0168-6445(03)00018-4.

    Article  CAS  Google Scholar 

  2. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591. doi:10.1007/s00253-005-1904-7.

    Article  CAS  Google Scholar 

  3. Sunna, A., & Antranikian, G. (1997). Critical Reviews in Biotechnology, 17, 39–67. doi:10.3109/07388559709146606.

    Article  CAS  Google Scholar 

  4. Wong, K. K., Tan, L. U., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  5. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., Jr., & Warren, R. A. (1991). Microbiological Reviews, 55, 303–315.

    CAS  Google Scholar 

  6. Henrissat, B., & Bairoch, A. (1993). The Biochemical Journal, 293, 781–788.

    CAS  Google Scholar 

  7. Henrissat, B., & Davies, G. (1997). Current Opinion in Structural Biology, 7, 637–644. doi:10.1016/S0959-440X(97)80072-3.

    Article  CAS  Google Scholar 

  8. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–328. doi:10.1007/s002530100704.

    Article  CAS  Google Scholar 

  9. Damaso, M. C. T. (2003). Applied and Environmental Microbiology, 69, 6064–6072. doi:10.1128/AEM.69.10.6064-6072.2003.

    Article  CAS  Google Scholar 

  10. Wu, Y. B., Ravidran, V., Thomas, D. G., Birtles, M. J., & Hendricks, W. H. (2004). British Poultry Science, 45, 385–394. doi:10.1080/00071660410001730888.

    Article  CAS  Google Scholar 

  11. Bedford, M. R., & Classen, H. L. (1992). The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chicks (pp. 361–370). Elsevier: Amsterdam.

    Google Scholar 

  12. Barrera, M., Cervantes, M., Sauer, W. C., Araiza, A. B., Torrentera, N., & Cervantes, M. (2004). Journal of Animal Science, 82, 1997–2003.

    CAS  Google Scholar 

  13. Thacker, P. A., & Baas, T. C. (1996). Animal Feed Science and Technology, 63, 187–200. doi:10.1016/S0377-8401(96)01028-0.

    Article  Google Scholar 

  14. Xia, T., & Wang, Q. (2009). World Journal of Microbiology & Biotechnology, 25, 93–100. doi:10.1007/s11274-008-9867-3.

    Article  CAS  Google Scholar 

  15. Weng, X. Y., & Sun, J. Y. (2005). Current Microbiology, 51, 188–192. doi:10.1007/s00284-005-4543-4.

    Article  CAS  Google Scholar 

  16. Lee, J. W., Park, J. Y., Kwon, M., & Choi, I. G. (2009). Journal of Bioscience and Bioengineering, 107, 33–37.

    Article  CAS  Google Scholar 

  17. Wang, Y. R., Zhang, H. L., He, Y. Z., Luo, H. Y., & Yao, B. (2007). Aquaculture (Amsterdam, Netherlands), 267, 328–334. doi:10.1016/j.aquaculture.2007.03.005.

    Article  CAS  Google Scholar 

  18. Zhou, C. Y., Li, D. F., Wu, M. C., & Wang, W. (2008). World Journal of Microbiology & Biotechnology, 24, 1393–1401. doi:10.1007/s11274-007-9622-1.

    Article  CAS  Google Scholar 

  19. Cao, Y. H., Qiao, J. Y., Li, Y. H., & Lu, W. Q. (2007). Applied Microbiology and Biotechnology, 76, 579–585. doi:10.1007/s00253-007-0978-9.

    Article  CAS  Google Scholar 

  20. Lu, W. Q., Li, D. F., & Wu, Y. B. (2003). Enzyme and Microbial Technology, 32, 305–311. doi:10.1016/S0141-0229(02)00292-2.

    Article  CAS  Google Scholar 

  21. Cao, Y. H., Chen, X. L., He, P. L., & Lu, W. Q. (2006). Biotechnology Letters, 17, 858–861.

    Google Scholar 

  22. Kim, T. R., Goto, Y., Hirota, N., Dawata, K., Denton, H., Wu, S. Y., et al. (1997). Protein Engineering, 10, 1339–1345. doi:10.1093/protein/10.11.1339.

    Article  CAS  Google Scholar 

  23. Reverter, D., Ventura, S., Villegas, V., Vendrell, J., & Avilés, F. X. (1998). The Journal of Biological Chemistry, 273, 3535–3541. doi:10.1074/jbc.273.6.3535.

    Article  CAS  Google Scholar 

  24. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467. doi:10.1073/pnas.74.12.5463.

    Article  CAS  Google Scholar 

  25. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  26. Zhao, X., Huo, K. K., & Li, Y. Y. (2000). Chinese Journal of Biotechnology, 16, 308–311.

    CAS  Google Scholar 

  27. Sue, M. P., Mariana, L. F., Brian, M., & Linda, M. H. (2005). Yeast (Chichester, England), 22, 249–270. doi:10.1002/yea.1208.

    Article  Google Scholar 

  28. Nikolay, S. O., Willem, J. S., & Maarten, A. J. (2002). Protein Expression and Purification, 24, 18–24. doi:10.1006/prep.2001.1523.

    Article  Google Scholar 

  29. Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., & Cregg, J. M. (1997). Gene, 186, 37–44. doi:10.1016/S0378-1119(96)00675-0.

    Article  CAS  Google Scholar 

  30. Deng, P., Li, D. F., Cao, Y. H., Lu, W. Q., & Wang, C. L. (2006). Enzyme and Microbial Technology, 39, 1096–1102. doi:10.1016/j.enzmictec.2006.02.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in University (NCET-07-0807), the National High Technology Research and Development Program (2007AA100601), and the Project of State Key Laboratory of Animal Nutrition (2004DA125184 (team) 0806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhang, B., Chen, X. et al. Improvement of Aspergillus sulphureus Endo-β-1,4-Xylanase Expression in Pichia pastoris by Codon Optimization and Analysis of the Enzymic Characterization. Appl Biochem Biotechnol 160, 1321–1331 (2010). https://doi.org/10.1007/s12010-009-8621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8621-0

Keywords

Navigation