Abstract
Eleven lipases are tested and it was found that lipases can be divided into three types according to water activity dependence. The first type is lipase that has low water activity dependence and works in a low water activity, its performance changes little with the change of water activity. The optimum water activity is 0.19 and Newlase F (Rhizopus niveus), lipase FAP-15 (Rhizopus oryzae) belong to this type. The second type is lipase that has medium water activity dependence and its performance changes with the change of water activity. Most lipases belong to this type and the optimum water activity in this type is about 0.60. The third type is lipase that has a high water activity dependence and works only in a high water activity (a w > 0.75). WGL (wheat germ) belongs to this type and the optimum water activity is 0.90. The relationship between enantioselectivity and water activity is also discussed and the enantioselectivity seems to be independent of water activity. And we also compared the two control methods of water activity, it was found that the method which add solid salt hydrates to the reaction mixture (method II) is more stable and effective throughout the reaction than the method that pre-equilibrate via the vapor phase (method I). The addition concentration of salt hydrates is also investigated and the optimum concentration is 1 g/l.
This is a preview of subscription content, access via your institution.





References
Patel, R. N. (2006). Current Organic Chemistry, 10, 1289–1321. doi:10.2174/138527206777698011.
Faber, K. (2004). Biotransformations in Organic Chemistry (5th ed.). Berlin: Springer.
Halling, P. J. (1992). Biotechnology Techniques, 6, 271–276. doi:10.1007/BF02439357.
Wehtje, E., Costes, D., & Adlercreutz, P. (1997). Journal of Molecular Catalysis B, Enzymatic, 3, 221–230. doi:10.1016/S1381-1177(97)00003-9.
Halling, P. J. (2002). In K. Drauz & H. Waldmann (Eds.), Enzyme catalysis in organic synthesis Vol. I, pp. 259–285. Weinheim: Wiley-VCH.
Wehtje, E., Svensson, I., Adlercreutz, P., & Mattiasson, B. (1994). Biotechnology Techniques, 7, 873–878. doi:10.1007/BF00156365.
Zacharis, E., Omar, I. C., Partridge, J., Robb, D. A., & Halling, P. J. (1997). Biotechnology and Bioengineering, 55(2), 367–374. doi:10.1002/(SICI)1097-0290(19970720)55:2<367::AID-BIT14>3.0.CO;2-E.
Harper, N., Dolman, M., Moore, B. D., & Halling, P. J. (2001). Enzyme & Microbial Technology, 29, 413–416. doi:10.1016/S0141-0229(01)00403-3.
Gupta, M. N., & Roy, I. (2004). European Journal of Biochemistry, 271, 2575–2583. doi:10.1111/j.1432-1033.2004.04163.x.
Quiro’s, M., Parker, M.-C., & Turner, N. J. (2001). Journal of Organic Chemistry, 66, 5074–5079. doi:10.1021/jo0101104.
Solares, L. F., Lavandera, I., Gotor-Ferna’ndez, V., Brieva, R., & Gotor, V. (2006). Tetrahedron, 62, 3284–3291. doi:10.1016/j.tet.2006.01.061.
Micaelo, N. M., Teixeira, V. H., Baptista, A. M., & Soares, C. M. (2005). Biophysical Journal, 89, 999–1008. doi:10.1529/biophysj.105.063297.
HGgberg, H.-E., Edlund, H., Berglund, P., & Hedenstrom, E. (1993). Tetrahedron: Asymmetry, 4(10), 2123–2126. doi:10.1016/S0957-4166(00)80055-5.
Orrenius, C., Norin, T., Hult, K., & Carrea, G. (1995). Tetrahedron Asymmetry, 6(12), 3023–3030. doi:10.1016/0957-4166(95)00399-1.
Xia, X., Wang, Y.-H., Yang, B., & Wang, X. (2008). Biotechnology Letters, . doi:10.1007/s10529-008-9823-1.
Chamouleau, F., Coulon, D., Girardin, M., & Ghoul, M. (2001). Journal of Molecular Catalysis B: Enzymatic, 11, 949–954. doi:10.1016/S1381-1177(00)00166-1.
Sarkari, M., Knutson, B. L., & Chen, C.-S. (1999). Biotechnology & Bioengineering, 65(3), 259–262. doi:10.1002/(SICI)1097-0290(19991105)65:3<258::AID-BIT2>3.0.CO;2-A.
Chua, L. S., & Sarmidi, M. R. (2006). Enzyme & Microbial Technology, 38, 551–556. doi:10.1016/j.enzmictec.2005.07.027.
Perraud, R., & Laboret, F. (1995). Applied Microbiology & Biotechnology, 44, 321–326. doi:10.1007/BF00169923.
Hirata, H., Higuchi, K., & Yamashina, T. (1990). Journal of Biotechnology, 14, 157–167. doi:10.1016/0168-1656(90)90004-U.
Partridge, J., Dennison, P. R., Moore, B. D., & Halling, P. J. (1998). Biochimica et Biophysica Acta, 1386, 79–89.
Valivety, R. H., Halling, P. J., Peilow, A. D., & Macrae, A. R. (1992). BBA, 1122, 143–146.
Edlund, H., Berglund, P., Jensen, M., Hedenstrom, E., & Hogberg, H. E. (1996). Acta Chemica Scandinavica, 50, 666–671. doi:10.3891/acta.chem.scand.50-0666.
Carrea, G., Ottolina, G., & Riva, S. (1995). Trends in Biotechnology, 13, 63–67. doi:10.1016/S0167-7799(00)88907-6.
Li W., Yang B., Wang Y., Wei D., Whiteley C., Wang X., (2008) Journal of molecular catalysis B: enzymatic, Available online 31 October 2008.
Acknowledgement
This work was supported by National Natural Science Foundation of China (20506007 and 20706021). We are grateful to Amano enzyme Inc. for the generous gift of enzymes used in this study. And we wish to thank the suggestion from Professor C.G. Whiteley.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Xia, X., Wang, C., Yang, B. et al. Water Activity Dependence of Lipases in Non-aqueous Biocatalysis. Appl Biochem Biotechnol 159, 759–767 (2009). https://doi.org/10.1007/s12010-009-8618-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-009-8618-8