Skip to main content
Log in

Bioproduction of Glycolic Acid from Glycolonitrile with a New Bacterial Isolate of Alcaligenes sp. ECU0401

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alcaligenes sp. ECU0401 has been isolated from soil samples with high nitrilase activity against glycolonitrile using the enrichment culture technique. The preferred carbon/nitrogen sources and metal ions were sodium acetate, a composite of peptone and yeast extract, and Cu2+, respectively. Glycolic acid was obtained in a yield of 96.5% after 14 h of biotransformation from a total of 200 mM glycolonitrile in the mode of sequential addition during the cultivation of Alcaligenes sp. ECU0401 in a 5-L jar fermenter. Fifty micromolars of glycolonitrile could be hydrolyzed in a yield of 94.1% by resting cells after 36 h. The microbial nitrilase system could hydrolyze various nitriles with high activity, and no amidase activity and glycolic acid were observed in hydrolyzing glycolamide. It significantly exhibited high enantioselectivity in the hydrolysis of mandelonitrile and 2-chloromandelonitrile (>99.9% e.e. p ). Efficient biocatalyst recycling was achieved as a result of immobilization in glutaraldehyde/polyethylenimine cross-linked carrageenan with immobilized cells exhibiting a biocatalyst productivity of 1,042.2 g glycolic acid per gram dry cell weight after 29 batch recycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liang, L. Y., Zheng, Y. G., & Shen, Y. C. (2008). Process Biochemistry, 43(7), 758–764. doi:10.1016/j.procbio.2008.03.002.

    Article  CAS  Google Scholar 

  2. Chen, J., Zheng, Y. G., & Shen, Y. C. (2008). Process Biochemistry, 43(9), 978–983. doi:10.1016/j.procbio.2008.05.002.

    Article  CAS  Google Scholar 

  3. Wang, M. X. (2005). Topics in Catalysis, 35, 117–130. doi:10.1007/s11244-005-3817-1.

    Article  Google Scholar 

  4. Asano, Y., Tani, Y., & Yamada, H. (1980). Agricultural and Biological Chemistry, 44, 2251–2252.

    CAS  Google Scholar 

  5. Zhu, D., Mukherjee, C., Yang, Y., Rios, B. E., Gallagher, D. T., Smith, N. N., et al. (2008). Journal of Biotechnology, 133, 327–333. doi:10.1016/j.jbiotec.2007.10.001.

    Article  CAS  Google Scholar 

  6. Shi, Y. H., Sun, H. Y., Lu, D. M., Le, Q. H., Chen, D. X., & Zhou, Y. C. (2006). Separation and Purification Technology, 49(1), 20–26. doi:10.1016/j.seppur.2005.08.002.

    Article  CAS  Google Scholar 

  7. DiCosimo, R., Payne, M.S., Panova, A., Thompson, J., & O'Keefe, D.P.(2007). U.S. Patent, 7,198,927.

  8. Ebmeyer, F., Haberlein, H., Haberlein, H.H., Haberlein, J.T., Haberlein, M.C., & Mohn, H.(1998). U.S. Patent, 5,723,662.

  9. Hu, J. G., Wang, Y. J., Zheng, Y. G., & Shen, Y. C. (2007). Enzyme and Microbial Technology, 41, 244–249. doi:10.1016/j.enzmictec.2007.01.014.

    Article  CAS  Google Scholar 

  10. Gavagan, J.E., Chauhan, S., DiCosimo, R., Fallon, R.D., & Gavagan, J.E.Payne, & M.S. (2002). U.S. Patent. USP 6,416,980.

  11. Xue, J.P., Luo, J.X., Li, H.B., Yu, J.H., Zhu, J., Xu, H., & Shen, Y.C.(2006). Chinese Patent, CN1772912.

  12. Tamura, K. (1996). European Patent, EP0,711,836A1.

  13. Yamaguchi, Y., Ushigome, M., & Kato, T.(1998). U.S. Patent, 5,756,306.

  14. Panova, A., Mersinger, L. J., Liu, Q., Foo, T., Roe, D. C., Spillan, W. L., et al. (2007). Advanced Synthesis & Catalysis, 349(8-9), 1462–1474. doi:10.1002/adsc.200700061.

    Article  CAS  Google Scholar 

  15. Ben-Bassat, A., Walls, A. M., Plummer, M. A., Sigmund, A. E., Spillan, W. L., & DiCosimo, R. (2008). Advanced Synthesis & Catalysis, 350(11-12), 1761–1769. doi:10.1002/adsc.200800228.

    Article  CAS  Google Scholar 

  16. Wu, S. J., Fogiel, A. J., Petrillo, K. L., Jackson, R. E., Parker, K. N., Parker, K. N., et al. (2008). Biotechnology and Bioengineering, 99(3), 717–720. doi:10.1002/bit.21643.

    Article  CAS  Google Scholar 

  17. He, Y. C., Xu, J. H., Xu, Y., Ouyang, L. M., & Pan, J. (2007). Chinese Chemical Letters, 18, 677–680. doi:10.1016/j.cclet.2007.04.034.

    Article  CAS  Google Scholar 

  18. Chen, S. P., Huang, T., & Sun, S. G. (2005). Journal of Chromatography. A, 1089, 142–147. doi:10.1016/j.chroma.2005.06.076.

    CAS  Google Scholar 

  19. Fawcett, J. K., & Scott, J. E. (1960). Journal of Clinical Pathology, 13, 156–159. doi:10.1136/jcp. 13.2.156.

    Article  CAS  Google Scholar 

  20. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16 S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  21. Zhang, Z. J., Xu, J. H., & He, Y. C. (2008). 12th Asia Pacific Confederation of Chemical Engineering Congress, 4, 232.

    Google Scholar 

  22. Kobayashi, M., Izui, H., Nagasawa, T., & Yamada, H. (1993). Proceedings of the National Academy of Sciences of the United States of America, 90, 247–251. doi:10.1073/pnas.90.1.247.

    Article  CAS  Google Scholar 

  23. Nagasawa, T., Kobayashi, M., & Yamada, H. (1998). Archives of Microbiology, 150, 89–94. doi:10.1007/BF00409723.

    Article  Google Scholar 

  24. Naik, S. C., Kaul, P., Barse, B., Banerjee, A., & Banerjee, U. C. (2008). Bioresource Technology, 99, 26–31. doi:10.1016/j.biortech.2006.11.053.

    Article  CAS  Google Scholar 

  25. Banerjee, A., Kaul, P., & Banerjee, U. C. (2006). Applied Microbiology and Biotechnology, 72, 77–87. doi:10.1007/s00253-005-0255-8.

    Article  CAS  Google Scholar 

  26. Nagasawa, T., Nakamura, T., & Yamada, H. (1990). Archives of Microbiology, 155, 13–17. doi:10.1007/BF00291267.

    Article  CAS  Google Scholar 

  27. Yamamoto, K., Oishi, K., Fujimatsu, I., & Komatsu, K. I. (1991). Applied and Environmental Microbiology, 57, 3028–3032.

    CAS  Google Scholar 

  28. Nagasawa, T., Mauger, J., & Yamada, H. (1990). European Journal of Biochemistry, 194, 765–772. doi:10.1111/j.1432-1033.1990.tb19467.x.

    Article  CAS  Google Scholar 

  29. Kobayashi, M., Yanaka, N., Nagasawa, T., & Yamada, H. (1990). Journal of Bacteriology, 172(9), 4807–4815.

    CAS  Google Scholar 

  30. He, Y. C., Xu, J. H., Pan, J., Ouyang, L. M., & Xu, Y. (2008). Bioprocess and Biosystems Engineering, 31(5), 445–451. doi:10.1007/s00449-007-0181-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 20506037 and 20672037), the Ministry of Science and Technology (no. 2007AA02Z225), and the Open Project Program of the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (no. 2008004). Cordial thanks are given to Dr. Yunhai Shi at ECUST for his kind donation of glycolonitrile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YC., Xu, JH., Su, JH. et al. Bioproduction of Glycolic Acid from Glycolonitrile with a New Bacterial Isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160, 1428–1440 (2010). https://doi.org/10.1007/s12010-009-8607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8607-y

Keywords

Navigation