Skip to main content
Log in

Enhanced Enzymatic Hydrolysis of Lignocellulose by Optimizing Enzyme Complexes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To enhance the conversion of the cellulose and hemicellulose, the corncob pretreated by aqueous ammonia soaking was hydrolyzed by enzyme complexes. The saturation limit for cellulase (Spezyme CP) was determined as 15 mg protein/g glucan (50 filter paper unit (FPU)/g glucan). The accessory enzymes (β-glucosidase, xylanase, and pectinase) were supplemented to hydrolyze cellobiose (cellulase-inhibiting product), hemicellulose, and pectin (the component covering the fiber surfaces), respectively. It was found that β-glucosidase (Novozyme 188) loading of 1.45 mg protein/g glucan [30 cellobiase units (CBU)/g glucan] was enough to eliminate the cellobiose inhibitor, and 2.9 mg protein/g glucan (60 CBU/g glucan) was the saturation limit. The supplementation of xylanase and pectinase can increase the conversion of cellulose and hemicellulose significantly. The yields of glucose and xylose enhanced with the increasing enzyme loading, but the increasing trend became low at high loading. Compared with xylanase, pectinase was more effective to promote the hydrolysis of cellulose and hemicellulose. The supplementation of pectinase with 0.12 mg protein/g glucan could increase the yields of glucose and xylose by 7.5% and 29.3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McKendry, P. (2002). Bioresource Technology, 83, 37–46. doi:10.1016/S0960-8524(01) 00118-3.

    Article  CAS  Google Scholar 

  2. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., et al. (2007). Biotechnology and Bioengineering, 97, 1028–1038. doi:10.1002/bit.21329.

    Article  CAS  Google Scholar 

  3. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117. doi:10.1021/bp000145+.

    Article  CAS  Google Scholar 

  4. Ortega, N., Busto, M. D., & Perez-Mateos, M. (2000). Biocatalysis and Biotransformation, 18, 311–330. doi:10.3109/10242420009015254.

    Article  CAS  Google Scholar 

  5. Ohgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Bioresource Technology, 98, 2503–2510. doi:10.1016/j.biortech.2006.09.003.

    Article  Google Scholar 

  6. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Biotechnology and Bioengineering, 97, 287–296. doi:10.1002/bit.21238.

    Article  CAS  Google Scholar 

  7. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47. doi:10.1016/S0960-8524(03) 00097-X.

    Article  CAS  Google Scholar 

  8. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 1959–1966. doi:10.1016/j.biortech.2005.01.010.

    Article  CAS  Google Scholar 

  9. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121, 1119–1131. doi:10.1385/ABAB:124:1-3:1119.

    Article  Google Scholar 

  10. Isci, A., Himmelsbach, J. N., Pometto, A. L., Raman, D. R., & Anex, R. P. (2008). Applied Biochemistry and Biotechnology, 144, 69–77. doi:10.1007/s12010-007-8008-z.

    Article  CAS  Google Scholar 

  11. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76) 90527-3.

    Article  CAS  Google Scholar 

  12. Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112. doi:10.1016/0076-6879(88) 60109-1.

    Article  CAS  Google Scholar 

  13. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628. doi:10.1007/s00253-002-1058-9.

    Article  CAS  Google Scholar 

  14. Nieves, R. A., Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1998). World Journal of Microbiology & Biotechnology, 14, 301–304. doi:10.1023/A:1008871205580.

    CAS  Google Scholar 

  15. Bezerra, R. M. F., & Dias, A. A. (2005). Applied Biochemistry and Biotechnology, 126, 49–59. doi:10.1007/s12010-005-0005-5.

    Article  CAS  Google Scholar 

  16. Gupta, R., Kim, T. H., & Lee, Y. Y. (2008). Applied Biochemistry and Biotechnology, 148, 59–70. doi:10.1007/s12010-007-8071-5.

    Article  CAS  Google Scholar 

  17. Carpita, N. C., & Gibeaut, D. M. (1993). The Plant Journal, 3, 1–30. doi:10.1111/j.1365-313X.1993.tb00007.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports received from Natural Science Foundation of China (no. 20576095), National Key Technology R&D program (2007BAD42B02), the International Science and Technology cooperation program (2006DA62400), the Programme of Introducing Talents of Discipline to Universities of China (No. B06006), and the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Su, R., Qi, W. et al. Enhanced Enzymatic Hydrolysis of Lignocellulose by Optimizing Enzyme Complexes. Appl Biochem Biotechnol 160, 1407–1414 (2010). https://doi.org/10.1007/s12010-009-8602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8602-3

Keywords

Navigation