Abstract
The genomic DNA from Ephedra glauca was randomly transferred to Saccharomyces cerevisiae and Hansenula anomala by argon and nitrogen ion implantation. Through repeated subculturing and using reversed phase high-performance liquid chromatography analysis to quantify the concentrations of the secondary metabolites, l-ephedrine and d-pseudoephedrine, 12 recombinant strains of genetically stable yeast were obtained, each using glucose as a carbon source, NaNO3 as a nitrogen source and producing l-ephedrine and/or d-pseudoephedrine. After culturing in liquid medium for 72 h, extracellular l-ephedrine and d-pseudoephedrine concentrations of 18.85 and 4.11 mg/L, respectively, were detected. Using l-ephedrine and d-pseudoephedrine as the target products, the transformation efficiencies of the genomic DNA from E. glauca transferred to S. cerevisiae and H. anomala were 1.15% (1/87) and 2.13% (8/376), respectively. The addition of the amino acid, L-Phe, to culture media substantially changed the amount of l-ephedrine and/or d-pseudoephedrine produced by the recombined yeasts. However, the change in metabolite production was not consistent among strains, rising in some, while dropping to nondetectable levels in others. After random amplification of polymorphic DNA (RAPD) analysis, four RAPD primers were obtained from the initial 100 RAPD primers, each amplifying different fragments with the recombined yeast Ar_Han0458 genome. Using one primer as polymerase chain reaction primer, the result showed that the recombined yeast Ar_Han0458 genome matched E. glauca genomic DNA at 150 bp, indicating a successful transfer of genetic information, facilitated by ion implantation.
This is a preview of subscription content, access via your institution.




References
Zha, L. H., Su, Z. G., Zhang, G. Z., & Ouyang, F. (2002). Chinese Bulletin of Botany, 19(4), 396–405.
Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). In B. B. Buchanan, W. Gruissem & R. L. Jones (Eds.), Biochemistry & molecular biology of plants (pp. 1250–1318). Rockville, MD: American Society of Plant Physiologists.
Yamazaki, K., Tamaki, T., Uzawa, S., Sankawa, U., & Shibata, S. (1973). Phytochemistry, 12, 2877–2882. doi:10.1016/0031-9422(73)80499-6.
Gunnar, G. S., & Spenser, I. D. (1988). Journal of the American Chemical Society, 110(11), 3714–3715. doi:10.1021/ja00219a086.
Schmidt, H. L., Werner, R. A., & Eisenreich, W. (2003). Phytochemistry Reviews, 2, 61–85. doi:10.1023/B:PHYT.0000004185.92648.ae.
Yu, Z. L., Wang, X. D., Deng, J. G., He, J. J., & Zhou, J. (1989). Anhui Agricultural Science, 28(1), 12–16.
Vilaithonga, T., Yu, L. D., Apavatjrutb, P., Phanchaisric, B., Sangyuenyongpipata, S., Anuntalabhochaid, S., et al. (2004). Physical Chemistry, 71, 927–935.
Yu, Z. L., & Huo, Y. P. (1994). Anhui Agricultural University, 21(3), 221–225.
Jiang, Z. H., & Peng, Z. H. (1994). Anhui Agricultural University, 21(3), 295–298.
Yu, Z. L. (2006). Introduction to ion beam biotechnology. New York, NY: Springer.
Yu, Z. L., Yang, J. B., Wu, Y. J., Cheng, B., He, J. J., & Huo, Y. P. (1993). Nuclear Instruments and Methods, B80(81), 1328–1331.
Song, D. J., Chen, R. L., Jun, R. C., & Yu, Z. L. (2001). Progress in Natural Science, 11(7), 557–560.
Fan, Y. H., Mao, P. H., & Jin, X. (2004). Biotechnology, 14(3), 65–67.
Burke, D., Dawson, D., & Stearns, T. (2000). Methods in yeast genetics. Woodbury, NY: Cold Spring Harbor Lab.
Shao, P. Z., & Cao, H. (2004). The molecular expertise of traditional Chinese medicine. Shanghai: Fudan University Press.
Lu, X. H., Jin, X., & Mao, P. H. (2005). Biotechnology, 15(2), 37–39.
Feng, H. Y., Yu, Z. L., & Chu, P. K. (2006). Materials Science and Engineering R, 54, 49–120. doi:10.1016/j.mser.2006.11.001.
Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., et al. (2006). Nature, 440, 940–943. doi:10.1038/nature04640.
Coruzzi, G., & Last, R. (2000). In B. B. Buchanan, W. Gruissem & R. L. Jones (Eds.), Biochemistry & molecular biology of plants (pp. 358–410). Rockville, MD: American Society of Plant Physiologists.
Bentley, R. (1990). Critical Reviews in Biochemistry and Molecular Biology, 25, 307–384. doi:10.3109/10409239009090615.
Acknowledgments
This work was supported by grants from the National Natural Science Foundation of China (no. 10365001 and no. 30760009). We thank Kun-Yun Qiao, Jun Zhou, and Ting Feng for their assistances in sample testing and the Division of Ephedrine, Xinjiang International Industry Co. Ltd. for providing standard samples of l-ephedrine and d-pseudoephedrine for RP-HPLC analysis.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Lü, J., Jin, X., Mao, PH. et al. Transfer of Ephedra Genomic DNA to Yeasts by Ion Implantation. Appl Biochem Biotechnol 158, 571–581 (2009). https://doi.org/10.1007/s12010-009-8597-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-009-8597-9
Keywords
- Ion implantation
- Ephedra genomic DNA
- Transformation
- Recombined yeast
- l-Ephedrine
- d-Pseudoephedrine