Skip to main content

Transfer of Ephedra Genomic DNA to Yeasts by Ion Implantation


The genomic DNA from Ephedra glauca was randomly transferred to Saccharomyces cerevisiae and Hansenula anomala by argon and nitrogen ion implantation. Through repeated subculturing and using reversed phase high-performance liquid chromatography analysis to quantify the concentrations of the secondary metabolites, l-ephedrine and d-pseudoephedrine, 12 recombinant strains of genetically stable yeast were obtained, each using glucose as a carbon source, NaNO3 as a nitrogen source and producing l-ephedrine and/or d-pseudoephedrine. After culturing in liquid medium for 72 h, extracellular l-ephedrine and d-pseudoephedrine concentrations of 18.85 and 4.11 mg/L, respectively, were detected. Using l-ephedrine and d-pseudoephedrine as the target products, the transformation efficiencies of the genomic DNA from E. glauca transferred to S. cerevisiae and H. anomala were 1.15% (1/87) and 2.13% (8/376), respectively. The addition of the amino acid, L-Phe, to culture media substantially changed the amount of l-ephedrine and/or d-pseudoephedrine produced by the recombined yeasts. However, the change in metabolite production was not consistent among strains, rising in some, while dropping to nondetectable levels in others. After random amplification of polymorphic DNA (RAPD) analysis, four RAPD primers were obtained from the initial 100 RAPD primers, each amplifying different fragments with the recombined yeast Ar_Han0458 genome. Using one primer as polymerase chain reaction primer, the result showed that the recombined yeast Ar_Han0458 genome matched E. glauca genomic DNA at 150 bp, indicating a successful transfer of genetic information, facilitated by ion implantation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Zha, L. H., Su, Z. G., Zhang, G. Z., & Ouyang, F. (2002). Chinese Bulletin of Botany, 19(4), 396–405.

    Google Scholar 

  2. Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). In B. B. Buchanan, W. Gruissem & R. L. Jones (Eds.), Biochemistry & molecular biology of plants (pp. 1250–1318). Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  3. Yamazaki, K., Tamaki, T., Uzawa, S., Sankawa, U., & Shibata, S. (1973). Phytochemistry, 12, 2877–2882. doi:10.1016/0031-9422(73)80499-6.

    Article  Google Scholar 

  4. Gunnar, G. S., & Spenser, I. D. (1988). Journal of the American Chemical Society, 110(11), 3714–3715. doi:10.1021/ja00219a086.

    Article  Google Scholar 

  5. Schmidt, H. L., Werner, R. A., & Eisenreich, W. (2003). Phytochemistry Reviews, 2, 61–85. doi:10.1023/

    Article  CAS  Google Scholar 

  6. Yu, Z. L., Wang, X. D., Deng, J. G., He, J. J., & Zhou, J. (1989). Anhui Agricultural Science, 28(1), 12–16.

    Google Scholar 

  7. Vilaithonga, T., Yu, L. D., Apavatjrutb, P., Phanchaisric, B., Sangyuenyongpipata, S., Anuntalabhochaid, S., et al. (2004). Physical Chemistry, 71, 927–935.

    Google Scholar 

  8. Yu, Z. L., & Huo, Y. P. (1994). Anhui Agricultural University, 21(3), 221–225.

    Google Scholar 

  9. Jiang, Z. H., & Peng, Z. H. (1994). Anhui Agricultural University, 21(3), 295–298.

    Google Scholar 

  10. Yu, Z. L. (2006). Introduction to ion beam biotechnology. New York, NY: Springer.

    Google Scholar 

  11. Yu, Z. L., Yang, J. B., Wu, Y. J., Cheng, B., He, J. J., & Huo, Y. P. (1993). Nuclear Instruments and Methods, B80(81), 1328–1331.

    Google Scholar 

  12. Song, D. J., Chen, R. L., Jun, R. C., & Yu, Z. L. (2001). Progress in Natural Science, 11(7), 557–560.

    CAS  Google Scholar 

  13. Fan, Y. H., Mao, P. H., & Jin, X. (2004). Biotechnology, 14(3), 65–67.

    Google Scholar 

  14. Burke, D., Dawson, D., & Stearns, T. (2000). Methods in yeast genetics. Woodbury, NY: Cold Spring Harbor Lab.

    Google Scholar 

  15. Shao, P. Z., & Cao, H. (2004). The molecular expertise of traditional Chinese medicine. Shanghai: Fudan University Press.

    Google Scholar 

  16. Lu, X. H., Jin, X., & Mao, P. H. (2005). Biotechnology, 15(2), 37–39.

    Google Scholar 

  17. Feng, H. Y., Yu, Z. L., & Chu, P. K. (2006). Materials Science and Engineering R, 54, 49–120. doi:10.1016/j.mser.2006.11.001.

    Article  Google Scholar 

  18. Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., et al. (2006). Nature, 440, 940–943. doi:10.1038/nature04640.

    Article  CAS  Google Scholar 

  19. Coruzzi, G., & Last, R. (2000). In B. B. Buchanan, W. Gruissem & R. L. Jones (Eds.), Biochemistry & molecular biology of plants (pp. 358–410). Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  20. Bentley, R. (1990). Critical Reviews in Biochemistry and Molecular Biology, 25, 307–384. doi:10.3109/10409239009090615.

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (no. 10365001 and no. 30760009). We thank Kun-Yun Qiao, Jun Zhou, and Ting Feng for their assistances in sample testing and the Division of Ephedrine, Xinjiang International Industry Co. Ltd. for providing standard samples of l-ephedrine and d-pseudoephedrine for RP-HPLC analysis.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Pei-Hong Mao or Long Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lü, J., Jin, X., Mao, PH. et al. Transfer of Ephedra Genomic DNA to Yeasts by Ion Implantation. Appl Biochem Biotechnol 158, 571–581 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Ion implantation
  • Ephedra genomic DNA
  • Transformation
  • Recombined yeast
  • l-Ephedrine
  • d-Pseudoephedrine