Skip to main content
Log in

Aerobic Biodegradation Pathway for Remazol Orange by Pseudomonas aeruginosa

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Removal of azo dyes from effluent generated by textile industries is rather difficult. Azo dyes represent a major class of synthetic colorants that are mutagenic and carcinogenic. Pseudomonas aeruginosa grew well in the presence of Remazol Orange (RO) and was able to decolorize and degrade it. In the present study, the decolorization and degradation efficiency using single culture P. aeruginosa with RO and textile wastewaters is studied. The elucidation of decolorization pathway for P. aeruginosa is of special interest. The degradation pathway and the metabolic products formed during the degradation were also predicted with the help of high performance liquid chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy analysis. The data show the cleavage of the azo dye RO to form both methyl metanilic acid and 4-aminobenzoic acid after decolorization and finally to oxidation forms benzoic acid, alkenes, aldehydes, and alkynes. The organism was able to decolorize the dye RO and wastewater effectively to the maximum of 82.4% and 62%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bisschops, A. E., & Spanjers, H. (2003). Environmental Technology, 24, 1399–1411. doi:10.1080/09593330309385684.

    Article  CAS  Google Scholar 

  2. Weisburger, J. H. (2002). Mutation Research, 506, 9–20.

    Google Scholar 

  3. Yeh, M. S., & Chang, J. S. (2004). Journal of Chemical Technology, 79, 1354–1360.

    Article  CAS  Google Scholar 

  4. Nachiyar, C. V., & Rajakumar, G. S. (2005). Enzyme and Microbial Technology, 36, 503–509. doi:10.1016/j.enzmictec.2004.11.015.

    Article  CAS  Google Scholar 

  5. Blumel, S., Knackmuss, H. J., & Stolz, A. (2002). Applied and Environmental Microbiology, 68, 3948–3955. doi:10.1128/AEM.68.8.3948-3955.2002.

    Article  CAS  Google Scholar 

  6. Hu, T. L. (2001). Water Science and Technology, 43, 261–269.

    CAS  Google Scholar 

  7. Chang, J. S., & Lin, C. Y. (2001). Biotechnology Letters, 23, 631–636. doi:10.1023/A:1010306114286.

    Article  CAS  Google Scholar 

  8. Ghosh, D. K., Mandal, A., & Chaudhuri, J. (1992). FEMS Microbiology Letters, 98, 229–234. doi:10.1111/j.1574-6968.1992.tb05519.x.

    Article  CAS  Google Scholar 

  9. Wong, P. K., & Yuen, P. Y. (1996). Water Research, 30, 1736–1744. doi:10.1016/0043-1354(96) 00067-X.

    Article  CAS  Google Scholar 

  10. Rafii, F., & Coleman, T. (1999). Journal of Basic Microbiology, 39, 29–35. doi:10.1002/(SICI) 1521-4028(199903) 39:1<29::AID-JOBM29>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  11. Sandhya, S., Padmavathy, S., Swaminathan, K., Subrahmanyam, Y. V., & Kaul, S. N. (2005). Process Biochemistry, 40, 885–890. doi:10.1016/j.procbio.2004.02.015.

    Article  CAS  Google Scholar 

  12. Chang, J., Chou, C., Lin, P., Ho, J., & Hu, T. L. (2001). Water Research, 35, 2841–2850. doi:10.1016/S0043-1354(00) 00581-9.

    Article  CAS  Google Scholar 

  13. APHA. (1998). Standard methods of water and wastewater (19th ed.). Washington D.C.: American Public Health Association.

    Google Scholar 

  14. Jeffery, G. A., Bassett, D., Mendhad, J., & Denney, R. C. (1991). Vogel’s text book of quantitative chemical analysis. New York: ELBS with Logman.

    Google Scholar 

  15. Chen, B. Y. (2002). Process Biochemistry, 38, 437–446. doi:10.1016/S0032-9592(02) 00151-6.

    Article  CAS  Google Scholar 

  16. Shuler, M. L., & Kargi, F. (1992). Bioprocess Engineering Basic Concepts. New Jersey, USA: Prentice Hall.

    Google Scholar 

  17. Gumport, R. I., Jones, A., Mintel, R., Rhodes, C., & Koeppe, R. E. (1990). Student’s Comparison of Stryer’s Biochemistry. New York: W.H. Freeman.

    Google Scholar 

  18. Chen, B. Y., Chen, S. Y., Lin, M. Y., & Chang, J. S. (2006). Process Biochemistry, 38, 437–446. doi:10.1016/S0032-9592(02) 00151-6.

    Article  CAS  Google Scholar 

  19. Hu, C., Yu, J. C., Hao, Z., & Wong, P. K. (2003). Applied Catalysis. B, Environmental, 42, 47–55. doi:10.1016/S0926-3373(02) 00214-X.

    Article  CAS  Google Scholar 

  20. Bin, Y., Jiti, Z., Jing, W., Cuihong, D., Hongman, H., Zhiyong, S., et al. (2004). FEMS Microbiology Letters, 236, 129–136. doi:10.1111/j.1574-6968.2004.tb09638.x.

    Article  Google Scholar 

  21. Nortemann, D. B., Baumyanten, J., Rast, H. G., & Knackmuss, H. J. (1986). Applied and Environmental Microbiology, 52, 1195–1202.

    CAS  Google Scholar 

  22. Supaka, N., Juntongjin, K., Damronglerd, S., Delia, M. L., & Strehaiano, P. (2004). Chemical Engineering Journal, 99, 169–176. doi:10.1016/j.cej.2003.09.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the director of the National Environmental Engineering Research Institute, Nagpur, India for allowing us to publish this work. We are grateful to DBT, New Delhi for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sandhya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarayu, K., Sandhya, S. Aerobic Biodegradation Pathway for Remazol Orange by Pseudomonas aeruginosa . Appl Biochem Biotechnol 160, 1241–1253 (2010). https://doi.org/10.1007/s12010-009-8592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8592-1

Keywords

Navigation