Skip to main content
Log in

Response of an Algal Consortium to Diesel under Varying Culture Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A diesel-tolerant sessile freshwater algal consortium obtained from the vicinity of Powai Lake (Mumbai, India) was cultured in the laboratory. The presence of diesel in batch cultures enhanced the maximum specific growth rate of the algal consortium. With decrease in light–dark (L:D) cycle from 20:4 to 4:20 h, the chlorophyll-a levels decreased; however, the removal of diesel was found to be maximum at L:D of 18:6 h with 37.6% degradation over and above controls. In addition to growth in the form of green clumps, white floating biomass was found surrounding the diesel droplets on the surface. This culture predominated at the least L:D ratio of 4:20 h. Studies confirmed the ability of the floating organisms to grow heterotrophically in the dark utilizing diesel as carbon source and also in the presence of light in a medium devoid of organic carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Radwan, S. S., Al-Hasan, R. H., Ali, N., Salamah, S., & Khanafer, M. (2005). International Biodeterioration & Biodegradation, 56, 28–33. doi:10.1016/j.ibiod.2005.03.007.

    Article  CAS  Google Scholar 

  2. Radwan, S. S., & Al-Muteirie, A. S. (2001). Microbiological Research, 155, 301–307.

    CAS  Google Scholar 

  3. Al-Awadhi, H., Al-Hasan, R. H., Sorkhoh, N. A., Salamah, S., & Radwan, S. S. (2003). International Biodeterioration & Biodegradation, 51, 181–185. doi:10.1016/S0964-8305(02)00140-3.

    Article  CAS  Google Scholar 

  4. Abed, R. M. M., Safi, M. M. D., Koster, J., Beer, D. D., El-Nahhal, Y., Rullkotter, J., et al. (2002). Applied and Environmental Microbiology, 68, 1674–1683. doi:10.1128/AEM.68.4.1674-1683.2002.

    Article  CAS  Google Scholar 

  5. Oteyza, T. G., Grimalt, J. O., Diestra, E., Sole, A., & Esteve, I. (2004). Applied Microbiology and Biotechnology, 66, 226–232. doi:10.1007/s00253-004-1694-3.

    Article  CAS  Google Scholar 

  6. Cohen, Y. (2002). International Microbiology, 5, 189–193. doi:10.1007/s10123-002-0089-5.

    Article  CAS  Google Scholar 

  7. Al-Hasan, R. H., Al-Bader, D., Sorkhoh, N. A., & Radwan, S. S. (1998). Marine Biology (Berlin), 130, 521–527. doi:10.1007/s002270050272.

    Article  CAS  Google Scholar 

  8. Abed, R. M. M., & Koster, J. (2005). International Biodeterioration & Biodegradation, 55, 29–37. doi:10.1016/j.ibiod.2004.07.001.

    Article  CAS  Google Scholar 

  9. Raghukumar, C., Vipparty, V., David, J. J., & Chandramohan, D. (2001). Applied Microbiology and Biotechnology, 57, 433–436. doi:10.1007/s002530100784.

    Article  CAS  Google Scholar 

  10. Sanchez, O., Ferrera, I., Vigues, N., Oteyza, T. G., Grimalt, J., & Mas, J. (2006). International Biodeterioration & Biodegradation, 58, 186–195. doi:10.1016/j.ibiod.2006.06.004.

    Article  CAS  Google Scholar 

  11. Chavan, A., & Mukherji, S. (2008). Journal of Hazardous Materials, 154, 63–72. doi:10.1016/j.jhazmat.2007.09.106.

    Article  CAS  Google Scholar 

  12. Chavan, A., & Mukherji, S. (2006). 3rd Biennial IWA Young Researchers Conference, Nanyang Technological University, Singapore, Water and Environment Management Series (pp. 169–176). UK: IWA.

    Google Scholar 

  13. Mukherji, S., Jagadevan, S., Mohapatra, G., & Vijay, A. (2004). Bioresource Technology, 95, 281–286. doi:10.1016/j.biortech.2004.02.029.

    Article  CAS  Google Scholar 

  14. MacKinney, G. (1941). The Journal of Biological Chemistry, 140, 315–322.

    CAS  Google Scholar 

  15. Becker, E. W. (1994). Microalgae-biotechnology and microbiology. Cambridge: Cambridge University Press.

    Google Scholar 

  16. American Public Health Association, American Water Works Association and Water Environment Federation (1998) Standard methods for examination of water and wastewater.

  17. Desikachary, T. V. (1959). Cyanophyta, monographs on algae. India: ICAR.

    Google Scholar 

  18. Burkholder, J. M., Gilbert, P. M., & Skelton, H. M. (2008). Harmful Algae, 8, 77–93. doi:10.1016/j.hal.2008.08.010.

    Article  CAS  Google Scholar 

  19. Porra, R. J. (1990). Biochimica et Biophysica Acta, 1015, 493–502. doi:10.1016/0005-2728(90)90083-G.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was partially funded by the Department of Biotechnology, New Delhi, India. The authors would like to thank Mr. Badrish Soni, BRD School of Biosciences, for discussions on characterization of the algal cultures and Mr. Praveen Kumar Mishra for his assistance in maintainance of the algal consortium. We acknowledge the Sophisticated Analytical Instrumental Facility (SAIF), IIT Bombay for facilitating microscopic examination of the cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna Mukherji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, A., Mukherji, S. Response of an Algal Consortium to Diesel under Varying Culture Conditions. Appl Biochem Biotechnol 160, 719–729 (2010). https://doi.org/10.1007/s12010-009-8569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8569-0

Keywords

Navigation