Skip to main content

Phytochelatins: Peptides Involved in Heavy Metal Detoxification

Abstract

Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Garbisu, C., & Alkorta, I. (2003). European Journal of Mineral Processing & Environmental Protection, 3, 58–66.

    Google Scholar 

  2. Halim, M., Conte, P., & Piccolo, A. (2003). Chemosphere, 52, 265–275. doi:10.1016/S0045-6535(03)00185-1.

    CAS  Google Scholar 

  3. Long, X. X., Yang, X. E., & Ni, W. Z. (2002). Chinese Journal of Applied Ecology, 13, 757–762.

    CAS  Google Scholar 

  4. Blaylock, M. J., & Huang, J. W. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, phytoextraction of metals pp. 53–70. New York: Wiley.

    Google Scholar 

  5. Salt, D. E., Blaylock, M., Kumar Nanda, P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995a). Bio/Technology, 13, 468–474. doi:10.1038/nbt0595-468.

    CAS  Google Scholar 

  6. Glass, D. J. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, economic potential of phytoremediation pp. 15–31. New York: Wiley.

    Google Scholar 

  7. Reeves, R. D., & Baker, A. J. M. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, metal-accumulating plants pp. 193–229. New York: Wiley.

    Google Scholar 

  8. Guerinot, M. L., & Salt, D. E. (2001). Plant Physiology, 125, 164–167. doi:10.1104/pp.125.1.164.

    CAS  Google Scholar 

  9. Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Environmental Science & Technology, 29, 1232–1238. doi:10.1021/es00005a014.

    CAS  Google Scholar 

  10. Navaza, A. P., Montes-Bayon, M., LeDuc, D. L., Terry, N., & Sanz-Mendel, A. (2006). Journal of Mass Spectrometry, 41, 323–331. doi:10.1002/jms.992.

    CAS  Google Scholar 

  11. Chen, L., Guo, Y., Yang, L., & Wang, Q. (2008). Chinese Science Bulletin, 53, 1503–1511. doi:10.1007/s11434-008-0062-6.

    CAS  Google Scholar 

  12. Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995b). Plant Physiology, 109, 1427–1433.

    CAS  Google Scholar 

  13. Salt, D. E., & Persans, M. W. (2000). Biotechnology & Genetic Engineering Reviews, 17, 389–413.

    Google Scholar 

  14. Wang, J., Zhao, F., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Plant Physiology, 130, 1552–1561. doi:10.1104/pp.008185.

    CAS  Google Scholar 

  15. Woodard, T. L., Thomas, R. J., & Baoshan, X. (2003). Communications in Soil Science and Plant Analysis, 34, 645–654. doi:10.1081/CSS-120018965.

    CAS  Google Scholar 

  16. Brooks, R. R. (1983). Biological methods of prospecting for minerals, volume 59 pp. 376–377. New York: Wiley.

    Google Scholar 

  17. January, M. C., Teresa, J. C., Keulen, H. V., & Wei, R. (2008). Chemosphere, 70, 531–537. doi:10.1016/j.chemosphere.2007.06.066.

    CAS  Google Scholar 

  18. Sousa, A. I., Cacador, I., Lillebo, A. I., & Pardal, M. A. (2008). Chemosphere, 70, 850–857. doi:10.1016/j.chemosphere.2007.07.012.

    CAS  Google Scholar 

  19. Li, Z. S., Lu, Y. P., Zhen, R. G., Szczypka, M., Thiele, D. J., & Rea, P. A. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 42–47. doi:10.1073/pnas.94.1.42.

    CAS  Google Scholar 

  20. Kawashima, I., Kennedy, T. D., Chino, M., & Lane, B. G. (1992). European Journal of Biochemistry, 209, 971–976. doi:10.1111/j.1432-1033.1992.tb17370.x.

    CAS  Google Scholar 

  21. Cobbett, C. S. (2000). Plant Physiology, 123, 825–832. doi:10.1104/pp.123.3.825.

    CAS  Google Scholar 

  22. Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., & Hayashi, Y. (1984). Tetrahedron Letters, 25, 3869–3872. doi:10.1016/S0040-4039(01)91190-6.

    CAS  Google Scholar 

  23. Gekeler, W., Grill, E., Winnacker, E. L., & Zenk, M. H. (1989). J Naturforsch Teil C, 44, 361–369.

    CAS  Google Scholar 

  24. Grill, E., Loffler, S., Winnacker, E. L., & Zenk, M. H. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838–6842. doi:10.1073/pnas.86.18.6838.

    CAS  Google Scholar 

  25. Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O’Connell, M. J., Goldsbrough, P. B., & Cobbett, C. S. (1999). The Plant Cell, 11, 1153–1164.

    CAS  Google Scholar 

  26. Clemens, S., Kim, E. J., Neumann, D., & Schroeder, J. I. (1999). The EMBO Journal, 18, 3325–3333. doi:10.1093/emboj/18.12.3325.

    CAS  Google Scholar 

  27. Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 7110–7115. doi:10.1073/pnas.96.12.7110.

    CAS  Google Scholar 

  28. Grill, E., Winnacker, E. L., & Zenk, M. H. (1985). Science, 230, 674–676. doi:10.1126/science.230.4726.674.

    CAS  Google Scholar 

  29. Rauser, W. E. (1995). Plant Physiology, 109, 1141–1149. doi:10.1104/pp.109.4.1141.

    CAS  Google Scholar 

  30. Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006a). Chemosphere, 65, 1027–1039. doi:10.1016/j.chemosphere.2006.03.033.

    CAS  Google Scholar 

  31. Figueroa, J. A. L., Afton, S., Wrobel, K., Wrobel, K., & Caruso, J. A. (2007). Journal of Analytical Atomic Spectrometry, 22, 897–904. doi:10.1039/b703912c.

    Google Scholar 

  32. Mendoza-Cozatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E. A., Kehr, J., & Schroeder, J. I. (2008). The Plant Journal, 54, 249–259. doi:10.1111/j.1365-313X.2008.03410.x.

    CAS  Google Scholar 

  33. Zhang, Z., Gao, X., & Qiu, B. (2008). Phytochemistry, 69, 911–9118. doi:10.1016/j.phytochem.2007.10.012.

    CAS  Google Scholar 

  34. Hanikenne, M. (2003). The New Phytologist, 159, 331–340. doi:10.1046/j.1469-8137.2003.00788.x.

    CAS  Google Scholar 

  35. Chaurasia, N., Mishra, Y., & Rai, L. C. (2008). Biochemical and Biophysical Research Communications, 376, 225–230. doi:10.1016/j.bbrc.2008.08.129.

    CAS  Google Scholar 

  36. Rauser, W. E. (1999). Cell Biochemistry and Biophysics, 31, 19–48. doi:10.1007/BF02738153.

    CAS  Google Scholar 

  37. Yang, X. E., & Yang, M. J. (2001). In W. J. Horst, et al. (Ed.), Plant nutrition-food security and sustainability of agro-ecosystems, some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyperaccumulating plant species (Thlaspi) pp. 444–445. Dordrecht: Kluwer.

    Google Scholar 

  38. Gzy, J., & Gwozdz, E. A. (2005). Plant Cell, Tissue and Organ Culture, 80, 59–67. doi:10.1007/s11240-004-8808-6.

    Google Scholar 

  39. Ramos, J., Clemente, M. R., Naya, L., Loscos, J., Perez-Rontome, C., Sato, S., Tabata, S., & Becana, M. (2007). Plant Physiology, 143, 1110–1118. doi:10.1104/pp.106.090894.

    CAS  Google Scholar 

  40. Maitani, T., Kubota, H., Sato, K., & Yamada, T. (1996). Plant Physiology, 110, 1145–1150.

    CAS  Google Scholar 

  41. Morelli, E., & Scarano, G. (2001). Marine Environmental Research, 52, 383–395. doi:10.1016/S0141-1136(01)00093-9.

    CAS  Google Scholar 

  42. Iglesia-Turino, S., Febrero, A., Jauregui, O., Caldelas, C., Araus, J. L., & Bort, J. (2006). Plant Physiology, 142, 742–749. doi:10.1104/pp.106.085068.

    CAS  Google Scholar 

  43. Nishikawa, K., Onodera, A., & Tominaga, N. (2006). Chemosphere, 63, 1553–1559. doi:10.1016/j.chemosphere.2005.09.056.

    CAS  Google Scholar 

  44. Figueroa, J. A. L., Wrobel, K., Afton, S., Caruso, J. A., Corona, J. F. G., & Wrobel, K. (2008). Chemosphere, 70, 2084–2091. doi:10.1016/j.chemosphere.2007.08.066.

    CAS  Google Scholar 

  45. Vestergaard, M., Matsumoto, S., Nishikori, S., Shiraki, K., Hirata, K., and Takagi, M. (2008). Analytical Sciences, 24, 277–281.

    Google Scholar 

  46. Glaeser, H., Coblenz, A., Kruczek, R., Ruttke, I., Ebert-Jung, A., & Wolf, K. (1991). Current Genetics, 19, 207–213. doi:10.1007/BF00336488.

    CAS  Google Scholar 

  47. Coblenz, A., & Wolf, K. (2006). FEMS Microbiology Reviews, 14, 303–308. doi:10.1111/j.1574-6976.1994.tb00103.x.

    Google Scholar 

  48. Howden, R., Goldsbrough, P. B., Andersen, C. R., & Cobbett, C. S. (1995). Plant Physiology, 107, 1059–1066. doi:10.1104/pp.107.4.1059.

    CAS  Google Scholar 

  49. Klapheck, S., Schlunz, S., & Bergmann, L. (1995). Plant Physiology, 107, 515–521.

    CAS  Google Scholar 

  50. Chen, J., Zhou, J., & Goldsbrough, P. B. (1997). Plant Physiology, 101, 165–172.

    CAS  Google Scholar 

  51. Inouhe, M., Ito, R., Ito, S., Sasada, N., Tohoyama, H., & Joho, M. (2000). Plant Physiology, 123, 1029–1036. doi:10.1104/pp.123.3.1029.

    CAS  Google Scholar 

  52. Li, J., Guo, J., Xu, W., & Ma, M. (2006a). Journal of Integrative Plant Biology, 48, 928–937. doi:10.1002/9780470988718.

    CAS  Google Scholar 

  53. Gasic, K., & Korban, S. S. (2007). Journal of Plant Molecular Biology, 64, 361–369. doi:10.1007/s11103-007-9158-7.

    CAS  Google Scholar 

  54. Lee, S., Petros, D., Moon, J. S., Ko, T. -S., Goldsbrough, P. B., & Korban, S. S. (2003a). Plant Physiology and Biochemistry, 41, 903–910. doi:10.1016/S0981-9428(03)00140-2.

    CAS  Google Scholar 

  55. Lee, S., Moon, J. S., Ko, T., Petros, D., Goldsbrough, P. B., & Korban, S. S. (2003b). Plant Physiology, 131, 656–663. doi:10.1104/pp.014118.

    CAS  Google Scholar 

  56. Wojas, S., Clemens, S., Hennig, J., Sklodowska, A., Kopera, E., Schat, H., Bal, W., & Antosiewicz, D. M. (2008). Journal of Experimental Botany, 59, 2205–2219. doi:10.1093/jxb/ern092.

    CAS  Google Scholar 

  57. Ranieri, A., Castagna, A., Scebba, F., Careri, M., Zagnoni, I., Predieri, G., Pagliari, M., & Toppi, L. S.di. (2005). Plant Physiology & Biochemistry, 43, 45–54. doi:10.1016/j.plaphy.2004.12.004.

    CAS  Google Scholar 

  58. Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan, R., Kuriakose, S. V., & Prasad, M. V. (2006b). Plant Physiology and Biochemistry, 44, 25–37. doi:10.1016/j.plaphy.2006.01.007.

    CAS  Google Scholar 

  59. De Vos, C. H. R., Vonk, M. J., Vooijs, R., & Schat, H. (1992). Plant Physiology, 98, 853–858. doi:10.1104/pp.98.3.853.

    Google Scholar 

  60. Schat, H., & Kalff, M. M. A. (1992). Plant Physiology, 99, 1475–1480. doi:10.1104/pp.99.4.1475.

    CAS  Google Scholar 

  61. De Knecht, J. A., van Dillen, M., Koevoets, P. L. M., Schat, H., Verkleij, J. A. C., & Ernst, W. H. O. (1994). Plant Physiology, 104, 255–261.

    Google Scholar 

  62. Sun, Q., Ye, Z. H., Wang, X. R., & Wong, M. H. (2007). Journal of Plant Physiology, 164, 1489–1498. doi:10.1016/j.jplph.2006.10.001.

    CAS  Google Scholar 

  63. Yates III, J. R., McCormack, A. L., Link, A. J., Schieltz, D., Eng, J., & Hays, L. (1996). Analyst (London), 121, 65–76. doi:10.1039/an996210065r.

    Google Scholar 

  64. Vacchina, V., Chassaigne, H., Lobinsk, R., Oven, M., & Zenk, M. H. (1999). Analyst (London), 124, 1425–1430. doi:10.1039/a905163e.

    CAS  Google Scholar 

  65. Vacchina, V., Lobinsk, R., Oven, M., & Zenk, M. H. (2000). Journal of Analytical Atomic Spectrometry, 15, 529–534. doi:10.1039/b000217h.

    CAS  Google Scholar 

  66. Fan, T. W., Lane, A. N., & Higashi, R. M. (2004). Phytochemical Analysis, 15, 175–183. doi:10.1002/pca.765.

    CAS  Google Scholar 

  67. Chen, L., Guo, Y., Yang, L., & Wang, Q. (2007). Journal of Analytical Atomic Spectrometry, 22, 1403–1408. doi:10.1039/b707830g.

    CAS  Google Scholar 

  68. Faucheur, S. L., Behra, R., & Sigg, L. (2005). Environmental Toxicology and Chemistry, 24, 1731–1737. doi:10.1897/04-394R.1.

    Google Scholar 

  69. Cruz, B. H., Diaz-Cruz, J. M., Sestakova, I., Velek, J., Arino, C., & Esteban, M. (2002). Journal of Electroanalytical Chemistry, 520, 111–118. doi:10.1016/S0022-0728(02)00640-X.

    CAS  Google Scholar 

  70. Kobayashi, R., & Yoshimura, E. (2006). Biological Trace Element Research, 114, 313–318. doi:10.1385/BTER:114:1:313.

    CAS  Google Scholar 

  71. SchmÖger, M. E. V., Oven, M., & Grill, E. (2000). Plant Physiology, 122, 793–801. doi:10.1104/pp.122.3.793.

    Google Scholar 

  72. Raab, A., Feldmann, J., & Meharg, A. A. (2004). Plant Physiology, 134, 1113–1122. doi:10.1104/pp.103.033506.

    CAS  Google Scholar 

  73. Hirata, K., Tsuji, N., & Miyamoto, K. (2005). Journal of Bioscience and Bioengineering, 100, 593–599. doi:10.1263/jbb.100.593.

    CAS  Google Scholar 

  74. Ruibin, D., Formentin, E., Losseso, C., Carimi, F., Benedetti, P., Terzi, M., & Lo, S. F. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 527–533. doi:10.1007/s10295-005-0234-1.

    Google Scholar 

  75. Clemens, S., Schroeder, J. I., & Degenkolb, T. (2001). European Journal of Biochemistry, 268, 3640–3643. doi:10.1046/j.1432-1327.2001.02293.x.

    CAS  Google Scholar 

  76. Vatamaniuk, O. K., Bucher, E. A., Ward, J. T., & Rea, P. (2001). The Journal of Biological Chemistry, 276, 20817–20820. doi:10.1074/jbc.C100152200.

    CAS  Google Scholar 

  77. Brulle, F., Cocquerelle, C., Wamalah, A. N., Morgan, A. J., Kille, P., Lepretre, A., & Vandenbulcke, F. (2008). Ecotoxicology and Environmental Safety, 71, 47–55. doi:10.1016/j.ecoenv.2007.10.032.

    CAS  Google Scholar 

  78. Tsuji, N., Nishikori, S., Iwabe, O., Shiraki, K., Mivasaka, H., Takagi, M., Hirata, K., & Miyamto, K. (2004). Biochemical and Biophysical Research Communications, 315, 751–755. doi:10.1016/j.bbrc.2004.01.122.

    CAS  Google Scholar 

  79. Rea, P. A., Vatamaniuk, O. K., & Rigden, D. J. (2004). Plant Physiology, 136, 2463–2474. doi:10.1104/pp.104.048579.

    CAS  Google Scholar 

  80. Wunschmann, J., Beck, A., Meyer, L., Letzel, T., Grill, E., & Lendzian, K. J. (2007). FEBS Letters, 581, 1681–1687. doi:10.1016/j.febslet.2007.03.039.

    Google Scholar 

  81. Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (2000). The Journal of Biological Chemistry, 275, 31451–31459. doi:10.1074/jbc.M002997200.

    CAS  Google Scholar 

  82. Vatamaniuk, O. K., Maris, S., Lang, A., Chalasani, S., Demkiv, L. O., & Rea, P. A. (2004). The Journal of Biological Chemistry, 279, 22449–22460. doi:10.1074/jbc.M313142200.

    CAS  Google Scholar 

  83. Tsuji, N., Nishikori, S., Iwabe, O., Matsumoto, S., Shiraki, K., Miyasaka, H., Takagi, M., Miyamto, K., & Hirata, K. (2005). Planta, 222, 181–191. doi:10.1007/s00425-005-1513-9.

    CAS  Google Scholar 

  84. Romanyuk, N. D., Rigden, D. J., Vatamaniuk, O. K., Lang, A., Cahoon, R. E., Jez, J. M., & Rea, P. A. (2006). Plant Physiology, 141, 858–869. doi:10.1104/pp.106.082131.

    CAS  Google Scholar 

  85. Ruotolo, R., Peracchi, A., Bolchi, A., Infusini, G., Amoresano, A., & Ottonello, S. (2004). The Journal of Biological Chemistry, 279, 14686–14693. doi:10.1074/jbc.M314325200.

    CAS  Google Scholar 

  86. Collin-Hansen, C., Pedersen, S. A., & Andersan, R. A. (2007). Mycologia, 99, 161–174. doi:10.3852/mycologia.99.2.161.

    CAS  Google Scholar 

  87. Xianyan, L., Wenyan, Z., Zhi, Z., Jian, C., & Du, G. (2008). Chinese Journal of Biotechnology, 24, 1046–1050. doi:10.1007/978-0-387-71139-3.

    Google Scholar 

  88. Liang, G., Lia, X., Du, G., & Chen, J. (2009). Bioresource Technology, 100, 350–355. doi:10.1016/j.biortech.2008.06.012.

    CAS  Google Scholar 

  89. Xiang, C., & Oliver, D. J. (1998). The Plant Cell, 10, 1539–1550.

    CAS  Google Scholar 

  90. Kang, S. H., Sing, S., Kim, J. Y., Lee, W., Mulchandani, A., & Chen, N. (2007). Applied and Environmental Microbiology, 73, 6317–6320. doi:10.1128/AEM.01237-07.

    CAS  Google Scholar 

  91. Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Chemosphere, 72, 1020–1026. doi:10.1016/j.chemosphere.2008.04.018.

    CAS  Google Scholar 

  92. Grill, E., Winnacker, E. L., & Zenk, M. H. (1986). FEBS Letters, 197, 115–120. doi:10.1016/0014-5793(86)80309-X.

    CAS  Google Scholar 

  93. Cazale, A. C., & Clemens, S. (2001). FEBS Letters, 507, 215–219. doi:10.1016/S0014-5793(01)02976-3.

    CAS  Google Scholar 

  94. Lee, S., & Korban, S. S. (2002). Planta, 215, 689–693. doi:10.1007/s00425-002-0793-6.

    CAS  Google Scholar 

  95. Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Plant Science, 169, 1059–1065. doi:10.1016/j.plantsci.2005.07.010.

    CAS  Google Scholar 

  96. Ducruix, C., Junot, C., Fievet, J. -B., Villiers, F., Ezan, E., & Bourguignon, J. (2006). Biochimie, 88, 1733–1742. doi:10.1016/j.biochi.2006.08.005.

    CAS  Google Scholar 

  97. Gong, J. -M., Lee, D., Chen, A., & Schroeder, J. I. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 10118–10123. doi:10.1073/pnas.1734072100.

    CAS  Google Scholar 

  98. Li, Y., Danker, O. P., Carreira, L., Smith, A. P., & Merger, R. B. (2006b). Plant Physiology, 141, 288–298. doi:10.1104/pp.105.074815.

    CAS  Google Scholar 

  99. Chen, A., Komives, E. A., & Schroeder, J. I. (2006). Plant Physiology, 141, 108–120. doi:10.1104/pp.105.072637.

    CAS  Google Scholar 

  100. Hirschi, K., Korenkov, V., Wilganowski, N., & GJ, W. (2000). Plant Physiology, 124, 125–133. doi:10.1104/pp.124.1.125.

    CAS  Google Scholar 

  101. Persans, M. W., Nieman, K., & Salt, D. E. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 9995–10000. doi:10.1073/pnas.171039798.

    CAS  Google Scholar 

  102. Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Trends in Plant Science, 9, 7–9. doi:10.1016/j.tplants.2003.11.009.

    CAS  Google Scholar 

  103. Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I., & Salt, D. E. (2000). Plant Physiology, 122, 1343–1354. doi:10.1104/pp.122.4.1343.

    Google Scholar 

  104. Bidwell, S. D., Crawford, S. A., Woodrow, I. E., Sommer-Knudsen, J., & Marshall, A. T. (2004). Plant Cell & Environment, 27, 705–716. doi:10.1111/j.0016-8025.2003.01170.x.

    CAS  Google Scholar 

  105. Lu, Y. P., Li, Z. S., & Rea, P. A. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 8243–8248. doi:10.1073/pnas.94.15.8243.

    CAS  Google Scholar 

  106. Ortiz, D. F., Kreppel, L., Speiser, D. M., Scheel, G., McDonald, G., & Ow, D. W. (1992). The EMBO Journal, 11, 3491–3499.

    CAS  Google Scholar 

  107. Ortiz, D. F., Ruscitti, T., McCue, K. F., & Ow, D. W. (1995). The Journal of Biological Chemistry, 270, 4721–4728. doi:10.1074/jbc.270.9.4721.

    CAS  Google Scholar 

  108. Salt, D. E., & Rauser, W. E. (1995). Plant Physiology, 107, 1293–1301.

    CAS  Google Scholar 

  109. Vatamaniuk, O. K., Bucher, E. A., Sundaram, M. V., & Rea, P. A. (2005). The Journal of Biological Chemistry, 280, 23684–23690. doi:10.1074/jbc.M503362200.

    CAS  Google Scholar 

  110. Rea, P. A., Li, Z. -S., Lu, Y. -P., & Drozdowicz, Y. M. (1998). Annual Review of Plant Physiology and Plant Molecular Biology, 49, 727–760. doi:10.1146/annurev.arplant.49.1.727.

    CAS  Google Scholar 

  111. Song, W. Y. (2003). Nature Biotechnology, 21, 914–919. doi:10.1038/nbt850.

    CAS  Google Scholar 

  112. Ghose, M., Shen, J., & Rosen, B. P. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 5001–5006. doi:10.1073/pnas.96.9.5001.

    Google Scholar 

  113. Gueldry, O. (2003). European Journal of Biochemistry, 270, 2486–2496. doi:10.1046/j.1432-1033.2003.03620.x.

    CAS  Google Scholar 

  114. Mendoza-Cozatl, D. G., Rodriguez-Zavala, J. S., Rodriguez-Enriquez, S., Mendoza-Hernandez, G., Briones-Gallardo, R., & Moreno-Sanchez, R. (2006). The FEBS Journal, 273, 5703–5713. doi:10.1111/j.1742-4658.2006.05558.x.

    CAS  Google Scholar 

  115. Dameron, C. T., Reese, R. N., Mehra, R. K., & Kortan, A. R. (1989). Nature, 338, 596–597. doi:10.1038/338596a0.

    CAS  Google Scholar 

  116. Reese, R. N., White, C. A., & Wing, D. R. (1992). Plant Physiology, 98, 225–229. doi:10.1104/pp.98.1.225.

    CAS  Google Scholar 

  117. Stasdeit, H., Duhme, A. K., Kneer, R., Zenk, M. H., Hermes, C., & Nolting, H. -F. (1991). Journal of the Chemical Society. Chemical Communications, 16, 1129–1130. doi:10.1039/c39910001129.

    Google Scholar 

  118. Morelli, E., Cruz, B. H., Somovigo, S., & Scarano, G. (2002). Plant Science, 163, 807–813. doi:10.1016/S0168-9452(02)00216-9.

    CAS  Google Scholar 

  119. Perego, P., Weghe, J. V., Ow, D. W., & Howell, S. B. (1997). Molecular Pharmacology, 51, 12–18.

    CAS  Google Scholar 

  120. Speiser, D. M., Ortiz, D. F., Kreppel, L., & Ow, D. W. (1992). Molecular and Cellular Biology, 12, 5301–5310.

    CAS  Google Scholar 

  121. Juang, R. H., MacCue, K. F., & Ow, D. W. (1993). Archives of Biochemistry and Biophysics, 304, 392–401. doi:10.1006/abbi.1993.1367.

    CAS  Google Scholar 

  122. Harada, E., Yamaguchi, Y., Koizumi, N., & Hiroshi, S. (2002). Journal of Plant Physiology, 159, 445–448. doi:10.1078/0176-1617-00733.

    CAS  Google Scholar 

  123. Saito, K. (2004). Plant Physiology, 136, 2443–2450. doi:10.1104/pp.104.046755.

    CAS  Google Scholar 

  124. Sulfate uptake and assimilation. Pathway of sulfate assimilation in bacteria 2008. http://www.hort.purdue.edu/rhodcv/hort640/sulfate/su00003.htm. Accessed January 01, 2009.

  125. Hunter, T. C., & Mehra, R. K. (1998). Journal of Inorganic Biochemistry, 69, 293–303. doi:10.1016/S0162-0134(98)00005-1.

    CAS  Google Scholar 

  126. Weghe, J. G. V., & Ow, D. W. (2008). Molecular Microbiology, 42, 29–36. doi:10.1046/j.1365-2958.2001.02624.x.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to anonymous reviewers for their constructive suggestions to improve the manuscript, to Indian Council of Agricultural Research New Delhi, India for financial assistance and to research works quoted in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. N. Rai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pal, R., Rai, J.P.N. Phytochelatins: Peptides Involved in Heavy Metal Detoxification. Appl Biochem Biotechnol 160, 945–963 (2010). https://doi.org/10.1007/s12010-009-8565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8565-4

Keywords

  • Heavy metals
  • Phytochelatins
  • Vacuolar sequestration
  • Sulfide ions