Skip to main content
Log in

Stagewise Dilute-Acid Pretreatment and Enzyme Hydrolysis of Distillers’ Grains and Corn Fiber

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Distillers’ grains and corn fiber are the coproducts of the corn dry grind and wet milling industries, respectively. Availability of distillers’ grains and corn fiber at the ethanol plant and their high levels of lignocellulosic material make these coproducts attractive feedstocks for conversion to ethanol. In this study, dilute sulfuric acid hydrolysis of these coproducts was investigated in a multistage scheme. After the completion of each pretreatment stage, the liquid substrate was separated and reused in the succeeding pretreatment stage with a fresh substrate. The substrate from each stage was also subjected to enzyme hydrolysis in a separate experiment. The sulfuric acid concentration and the substrate loading were maintained at 1.0 vol% and 15.0 wt.%, respectively, and the temperature was maintained at 120 °C in all the experiments. Experiments were also performed to study the effect of removing oil from the samples prior to the pretreatment. The highest concentration of monomeric sugars (MS) was observed when three stages of pretreatment were followed by the enzyme reaction. The enzyme hydrolysis of the three-stage pretreated dried distillers’ grains and corn fiber yielded 122.6 ± 5.8 and 184.5 ± 4.1 mg/mL of MS, respectively. The formation of inhibitory products was also monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Rasco, B. A., Dong, F. M., Hashisaka, A. E., Gazzaz, S. S., Downey, S. E., & San Buenaventura, M. L. (1987). Journal of Food Science, 52, 236–237. doi:10.1111/j.1365-2621.1987.tb14019.x.

    Article  CAS  Google Scholar 

  2. Saha, B. C., & Bothast, R. J. (1999). Applied Biochemistry and Biotechnology, 76, 65–77. doi:10.1385/ABAB:76:2:65.

    Article  CAS  Google Scholar 

  3. U.S. Department of Energy.(2005), Sugar Platform-Energy efficiency and renewable energy biomass program. Available from http://www1.eere.energy.gov/biomass/sugar_ platform.html. Accessed November 05, 2007.

  4. Moniruzzaman, M., Dale, B. E., Hespell, R. B., & Bothast, R. J. (1997). Applied Biochemistry and Biotechnology, 67, 113–126. doi:10.1007/BF02787846.

    Article  CAS  Google Scholar 

  5. Bura, R., Mansfield, S. D., Saddler, J. N., & Bothast, R. J. (2002). SO2-catalyzed steam explosion of corn fiber for ethanol production. Applied Biochemistry and Biotechnology, 98–100, 59–72. doi:10.1385/ABAB:98-100:1-9:59.

    Article  Google Scholar 

  6. Grohmann, K., & Bothast, R. J. (1997). Process Biochemistry, 32, 405–415. doi:10.1016/S0032-9592(96)00095-7.

    Article  CAS  Google Scholar 

  7. Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105–108, 115–125. doi:10.1385/ABAB:105:1-3:115.

    Article  Google Scholar 

  8. MacDonald, D. G., Bakhshi, N. N., Mathews, J. F., Roychowdhury, A., Bajpai, P., & Moo-Young, M. (1983). Biotechnology and Bioengineering, 25, 2067–2076. doi:10.1002/bit.260250815.

    Article  CAS  Google Scholar 

  9. Öhgren, K., Galbe, M., & Zacchi, G. (2005). Applied Biochemistry and Biotechnology, 121–124, 1055–1067. doi:10.1385/ABAB:124:1-3:1055.

    Article  Google Scholar 

  10. Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105–108, 69–85. doi:10.1385/ABAB:105:1-3:69.

    Article  Google Scholar 

  11. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977. doi:10.1016/j.biortech.2005.01.011.

    Article  CAS  Google Scholar 

  12. Dien, B. S., Nagle, N., Singh, V., Moreau, R. A., Nichols, N. N., Johnston, D., et al. (2004). Applied Biochemistry and Biotechnology, 115, 937–950. doi:10.1385/ABAB:115:1-3:0937.

    Article  Google Scholar 

  13. Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., & Schell, D. J. (1998). Applied Biochemistry and Biotechnology, 70–72, 77–87. doi:10.1007/BF02920125.

    Article  Google Scholar 

  14. Wang, D., Bean, S. R., & Corredor, D. Y. (2006). Cereal Chemistry, 84, 61–66.

    Google Scholar 

  15. Allen, S. G., Schulman, D., Lichwa, J., Antal Jr, M. J., Jennings, E., & Elander, R. (2001). Industrial & Engineering Chemistry Research, 40, 2352–2361. doi:10.1021/ie000579+.

    Article  CAS  Google Scholar 

  16. Ezeji, E., & Blaschek, H. P. (2008). Bioresource Technology, 99, 5232–5242. doi:10.1016/j.biortech.2007.09.032.

    Article  CAS  Google Scholar 

  17. Kim, Y., Hendrickson, R., Mosier, N. S., Ladisch, M. R., Bals, B., Balan, V., et al. (2008). Bioresource Technology, 99, 5206–5215. doi:10.1016/j.biortech.2007.09.031.

    Article  CAS  Google Scholar 

  18. Dien, B. S., Ximenes, E. A., O’Bryan, P. J., Moniruzzaman, M., Li, X.-L., Balan, V., et al. (2008). Bioresource Technology, 99, 5216–5225. doi:10.1016/j.biortech.2007.09.030.

    Article  CAS  Google Scholar 

  19. Ladisch, M., Dale, B., Tyner, W., Mosier, N., Kim, Y., Cotta, M., et al. (2008). Bioresource Technology, 99, 5157–5159. doi:10.1016/j.biortech.2007.09.082.

    Article  CAS  Google Scholar 

  20. Lee, K. C. P., Bulls, M., Holmes, J., & Barrier, J. W. (1997). Applied Biochemistry and Biotechnology, 66, 1–23. doi:10.1007/BF02788803.

    Article  CAS  Google Scholar 

  21. Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Applied Biochemistry and Biotechnology, 84–86, 561–576. doi:10.1385/ABAB:84-86:1-9:561.

    Article  Google Scholar 

  22. National Renewable Energy Laboratory. (2007). Standard Biomass Analytical Procedures. Available from http://www.nrel.gov/biomass/analytical_procedures.html. Accessed December 27, 2007.

  23. Sluiter, A. (2005). in NREL laboratory analytical procedure. Determination of total solids in biomass. Available from http://www.nrel.gov/biomass/pdfs/9361.pdf. Accessed December 27, 2007.

  24. Thiex, N. J., Anderson, S., & Gildemeister, B. (2003). Journal of Association of Analytical Chemistry International, 86, 899–908.

    CAS  Google Scholar 

  25. Sluiter, A. (2005). in NREL laboratory analytical procedure. Determination of starch in solid biomass samples by HPLC.Available from http://www.nrel.gov/biomass/pdfs /9360. pdf. Accessed December 27, 2007.

  26. Sluiter, A. (2007). in NREL laboratory analytical procedure. Determination of structural carbohydrates and lignin in biomass. Available from http://www.nrel.gov/ biomass/pdfs /lap_carbslignin_2007.pdf. Accessed December 27, 2007.

  27. Sparks, D. L. (1996). In D. L. Sparks (Ed.), Methods of soil analysis, part 3: Chemical Methods pp. 1085–1089. Madison, WI: Soil Science Society of America Inc.

    Google Scholar 

  28. Sluiter, A. (2005). in NREL laboratory analytical procedure. Determination of ash in biomass. Available from http://www.nrel.gov/biomass/pdfs/9338.pdf. Accessed November 05, 2007.

  29. Xiao, X., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113–116, 1115–1126. doi:10.1385/ABAB:115:1-3:1115.

    Article  Google Scholar 

  30. Wood, T. M., & Bhat, K. M. (1988). In W. A. Wood, & S. T. Kellogg (Eds.), Methods in enzymology, vol. 160: Methods for measuring cellulase activities pp. 87–116. San Diego, CA: Academic.

    Google Scholar 

  31. Kim, Y., Mosier, N. S., Hendrickson, R., Ezeji, T., Blaschek, H., Dien, B., et al. (2008). Bioresource Technology, 99, 5165–5176. doi:10.1016/j.biortech.2007.09.028.

    Article  CAS  Google Scholar 

  32. Larsson, M., Galbe, M., & Zacchi, G. (1997). Bioresource Technology, 60, 143–151. doi:10.1016/S0960-8524(97)00011-4.

    Article  CAS  Google Scholar 

  33. Larsson, S., Reimann, A., Nilvebrant, L. O., & Jönsson, L. J. (1999). Applied Biochemistry and Biotechnology, 77/79, 91–103. doi:10.1385/ABAB:77:1-3:91.

    Article  Google Scholar 

  34. Julian, G., Bothast, R. J., & Krull, L. H. (1990). Journal of Industrial Microbiology, 5, 391–394. doi:10.1007/BF01578098.

    Article  CAS  Google Scholar 

  35. Nilvebrant, N. O., Persson, P., Reimann, A., De Sousa, F., Gorton, L., & Jönsson, L. J. (2003). Applied Biochemistry and Biotechnology, 105–108, 615–628. doi:10.1385/ABAB:107:1-3:615.

    Article  Google Scholar 

  36. Alkasrawi, M., Galbe, M., & Zacchi, G. (2002). Applied Biochemistry and Biotechnology, 98–100, 849–861. doi:10.1385/ABAB:98-100:1-9:849.

    Article  Google Scholar 

  37. Couallier, E. M., Payot, T., Bertin, A. P., & Lameloise, M. L. (2006). Applied Biochemistry and Biotechnology, 133, 217–237. doi:10.1385/ABAB:133:3:217.

    Article  CAS  Google Scholar 

  38. Graves, T., Narendranath, N. V., Dawson, K., & Power, R. (2006). Journal of Industrial Microbiology & Biotechnology, 33, 469–474. doi:10.1007/s10295-006-0091-6.

    Article  CAS  Google Scholar 

  39. Mariorella, B., Blanch, H. W., & Wilke, C. R. (1983). Biotechnology and Bioengineering, 25, 103–121. doi:10.1002/bit.260250109.

    Article  Google Scholar 

  40. Sanchez, B., & Bautista, J. (1988). Enzyme and Microbial Technology, 10, 315–318. doi:10.1016/0141-0229(88)90135-4.

    Article  CAS  Google Scholar 

  41. García-Aparicio, M. P., Ballesteros, I., González, A., Oliva, J. M., Ballesteros, M., & Negro, M. J. (2006). Applied Biochemistry and Biotechnology, 129/132, 278–288. doi:10.1385/ABAB:129:1:278.

    Article  Google Scholar 

  42. Galbe, M., & Zacchi, G. (1992). Applied Biochemistry and Biotechnology, 34–35, 93–104. doi:10.1007/BF02920536.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Nebraska Research Initiative for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Noureddini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noureddini, H., Byun, J. & Yu, TJ. Stagewise Dilute-Acid Pretreatment and Enzyme Hydrolysis of Distillers’ Grains and Corn Fiber. Appl Biochem Biotechnol 159, 553–567 (2009). https://doi.org/10.1007/s12010-009-8544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8544-9

Keywords