Skip to main content
Log in

Cytotoxicity of Bacterial-Derived Toxins to Immortal Lung Epithelial and Macrophage Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Health risks associated with inhalation and deposition of biological materials have been a topic of great concern due to highly publicized cases of inhalation anthrax, of new regulations on the release of particulate matter, and to increased concerns on the hazards of indoor air pollution. Here, we present an evaluation of the sensitivity of two immortal cell lines (A549, human lung carcinoma epithelia) and NR8383 (rat alveolar macrophages) to a variety of bacterial-derived inhalation hazards and simulants including etoposide, gliotoxin, streptolysin O, and warfarin. The cell response is evaluated through quantification of changes in mitochondrial succinate dehydrogenase activity, release of lactate dehydrogenase, initiation of apoptosis, and through changes in morphology as determined by visible light microscopy and scanning electron microscopy. These cells display dose–response relations to each toxin, except for triton which has a step change response. The first observable responses of the epithelial cells to these compounds are changes in metabolism for one toxin (warfarin) and alterations in membrane permeability for another (gliotoxin). The other four toxins display a similar time course in response as gauged by changes in metabolism and loss of membrane integrity. Macrophages are more sensitive to most toxins; however, they display a lower level of stability. This information can be used in the design of cell-based sensors responding to these and similar hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stenger, D. A., Gross, G. W., Keefer, E. W., Shaffer, K. M., Andreadis, J. D., Ma, W., & Pancrazio, J. J. (2001). Trends in Biotechnology, 19, 304–310. doi:10.1016/S0167-7799(01)01690-0.

    Article  CAS  Google Scholar 

  2. DeBusschere, B. D., & Kovacs, G. T. A. (2001). Biosensors & Bioelectronics, 16, 543–556. doi:10.1016/S0956-5663(01)00168-3.

    Article  CAS  Google Scholar 

  3. Gilchrist, K. H., Barker, V. N., Fletcher, L. E., DeBusschere, B. D., Ghanouni, P., Giovangrandi, L., & Kovacs, G. T. A. (2001). Biosensors and Bioelectronics, 16, 557–564. doi:10.1016/S0956-5663(01)00169-5.

    Article  CAS  Google Scholar 

  4. Thach, D. C., Shaffer, K. M., Ma, W., & Stenger, D. A. (2003). Biosensors & Bioelectronics, 18, 1065–1072. doi:10.1016/S0956-5663(02)00246-4.

    Article  CAS  Google Scholar 

  5. Sutton, G. P., Soper, J. T., Park, R. C., & Hatch, K. D. (1991). Gynecologic Oncology, 40, 179. doi:10.1016/0090-8258(91)90161-W.

    Article  Google Scholar 

  6. Grovel, O., Pouchus, Y. F., & Verbist, J.-F. (2003). Toxicon, 42, 297–300. doi:10.1016/S0041-0101(03)00146-6.

    Article  CAS  Google Scholar 

  7. Boesewetter, D. E., Collier, J. M., Kim, A. M., & Riley, M. R. (2006). Cell Biology and Toxicology, 22, 101–118. doi:10.1007/s10565-006-0150-9.

    Article  CAS  Google Scholar 

  8. Palmer, M. (2001). Toxicon, 39, 1681–1689. doi:10.1016/S0041-0101(01)00155-6.

    Article  CAS  Google Scholar 

  9. Vock, E. H., Lutz, W. K., Hormes, P., Hoffmann, H. D., & Vamvakas, S. (1998). Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 413, 83–94. doi:10.1016/S1383-5718(98)00019-9.

    Article  CAS  Google Scholar 

  10. Riley, M. R., Boesewetter, D. E., Kim, A. M., & Sirvent, F. P. (2003). Toxicology, 190, 171–185. doi:10.1016/S0300-483X(03)00162-8.

    Article  CAS  Google Scholar 

  11. Riley, M. R., Boesewetter, D. E., Turner, R. A., Kim, A. M., Collier, J. M., & Hamilton, A. (2005). Toxicology In Vitro, 19, 411–419. doi:10.1016/j.tiv.2005.01.001.

    Article  CAS  Google Scholar 

  12. Okeson, C. D., Riley, M. R., & Riley-Saxton, E. (2004). Toxicology In Vitro, 18, 673–680. doi:10.1016/j.tiv.2004.03.006.

    Article  CAS  Google Scholar 

  13. Katterman, M. E., Birchard, S., Seraphin, S., & Riley, M. R. (2007). Chemosphere, 66, 567–573. doi:10.1016/j.chemosphere.2006.05.037.

    Article  CAS  Google Scholar 

  14. Johnson, D. R., Kaplan, E. L., Sramek, J., Bicova, R., Havlicek, J., Havlickova, H., Motlova, J., & Kriz, P. (1996). Laboratory Diagnosis of Group A Streptococcal Infections. Geneva, Switzerland: World Health Organization.

    Google Scholar 

  15. Riley, M. R., Jordan, K. A., & Cox, M. L. (2004). Biochemical Engineering Journal, 19, 95–99. doi:10.1016/j.bej.2003.12.003.

    Article  CAS  Google Scholar 

  16. Hicks, C. R. (1982). Fundamental concepts in the design of experiments (pp. 38–52, 3rd ed.). New York, NY: Saunders College.

    Google Scholar 

  17. Souid-Mensi, G., Moukha, S., Mobio, T. A., Maaroufi, K., & Creppy, E. E. (2008). Toxicon, 51, 1338–1334. doi:10.1016/j.toxicon.2008.03.002.

    Article  CAS  Google Scholar 

  18. Davoren, M., Herzog, E., Casey, A., Cottineau, B., Chambers, G., Byrne, H. J., & Lyng, F. M. (2007). Toxicology in Vitro, 21, 438–448. doi:10.1016/j.tiv.2006.10.007.

    Article  CAS  Google Scholar 

  19. Wallaert, B., Fahy, O., Tsicopoulos, A., Gosset, P., & Tonnel, A. B. (2000). Toxicology Letters, 157, 112–113.

    Google Scholar 

  20. Huang, E.-S., Benson, J. D., Huong, S.-M., Wilson, B., & van der Horst, C. (1992). Antiviral Research, 17, 17–32. doi:10.1016/0166-3542(92)90087-L.

    Article  CAS  Google Scholar 

  21. Solovyan, V., Bezvenyuk, Z., Huotari, V., Tapiola, T., Suuronen, T., & Salminen, A. (1998). Brain Research. Molecular Brain Research, 62, 43–55. doi:10.1016/S0169-328X(98)00234-4.

    Article  CAS  Google Scholar 

  22. Kreja, L., & Seidel, H.-J. (2002). Chemosphere, 49, 105–110. doi:10.1016/S0045-6535(02)00159-5.

    Article  CAS  Google Scholar 

  23. Eichner, R. D., Waring, P., Geue, A. M., Braithwaite, A. W., & Mullbacher, A. (1988). The Journal of Biological Chemistry, 263, 3772–3777.

    CAS  Google Scholar 

  24. Waring, P., Newcombe, N., Edel, M., Lin, Q. H., Jiang, H., Sjaarda, A., Piva, T., & Mullbacher, A. (1994). Toxicon, 32, 491–504. doi:10.1016/0041-0101(94)90301-8.

    Article  CAS  Google Scholar 

  25. Zhou, X., Zhao, A., Goping, G., & Hirszel, P. (2000). Toxicological Sciences, 54, 194–202. doi:10.1093/toxsci/54.1.194.

    Article  CAS  Google Scholar 

  26. Fitzpatrick, F. A., & Wheeler, R. (1999). International Immunopharmacology, 3, 1699–1714. doi:10.1016/j.intimp.2003.08.007.

    Article  Google Scholar 

  27. Kreja, L., & Seidel, H.-J. (2002). Chemosphere, 105, 49.

    Google Scholar 

  28. Cullen, P., Tegelkamp, K., Kobker, M., Kannenberg, F., & Assmann, G. (1997). Analytical Biochemistry, 251, 39–44. doi:10.1006/abio.1997.2227.

    Article  CAS  Google Scholar 

  29. Bellini, M. J., Polo, M. P., de Alaniz, M. J. T., & de Bravo, M. G. (2003). Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69, 351–357. doi:10.1016/S0952-3278(03)00149-2.

    Article  CAS  Google Scholar 

  30. Riley, M. R., DeRosa, D., Blaine, J., Potter Jr, B. G., Lucas, P., Le Coq, D., Juncker, C., Boesewetter, D. E., Collier, J. M., Boussard-Plédel, C., & Bureau, B. (2006). Biotechnology Progress, 22, 24–31. doi:10.1021/bp050125d.

    Article  CAS  Google Scholar 

  31. Riley, M. R., Lucas, P., Le Coq, D., Collier, J. M., Boesewetter, D. E., DeRosa, D. M., Katterman, M. E., Boussard-Plédel, C., & Bureau, B. (2006). Biotechnology and Bioengineering, 95, 599–612. doi:10.1002/bit.21152.

    Article  CAS  Google Scholar 

  32. Lucas, P., Le Coq, D., Collier, J. M., Boesewetter, D. E., Boussard-Plédel, C., Bureau, B., & Riley, M. R. (2005). Applied Spectroscopy, 59, 1–9. doi:10.1366/0003702052940387.

    Article  CAS  Google Scholar 

  33. Lucas, P., Le Coq, D., Juncker, C., Collier, J. M., Boesewetter, D. E., Boussard-Plédel, C., Bureau, B., & Riley, M. R. (2005). Applied Spectroscopy, 59, 1–9. doi:10.1366/0003702052940387.

    Article  CAS  Google Scholar 

  34. Notingher, I., Selvakumaran, J., & Hench, L. L. (2004). Biosensors & Bioelectronics, 20, 780–789. doi:10.1016/j.bios.2004.04.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DARPA contract # N66001-C-8041, by the NIEHS sponsored Southwest Environmental Health Sciences Center # P30 ES06694, and by the Arizona Board of Regents Technology and Research Initiative Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, D.E., Collier, J.M., Katterman, M.E. et al. Cytotoxicity of Bacterial-Derived Toxins to Immortal Lung Epithelial and Macrophage Cells. Appl Biochem Biotechnol 160, 751–763 (2010). https://doi.org/10.1007/s12010-009-8526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8526-y

Keywords

Navigation