Skip to main content
Log in

Improvement of Steroid Biotransformation with Hydroxypropyl-β-Cyclodextrin Induced Complexation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The inclusion complexes induced by cyclodextrins and its derivates have been shown previously to enhance the biotransformation of hydrophobic compounds. Using hydroxypropyl-β-cyclodextrin (HP-β-CD; 20% w/v), the water solubility of cortisone acetate increased from 0.039 to 7.382 g L−1 at 32 °C. The solubilization effect of HP-β-CD was far superior to dimethylformamide (DMF) and ethanol. The dissolution rate also significantly increased in the presence of HP-β-CD. The enzymatic stability of Δ1-dehydrogenase from Arthrobacter simplex TCCC 11037 was not influenced by the increasing concentrations of HP-β-CD contrary to the organic cosolvents which negatively influenced in the order DMF > ethanol. The activity inhibition effect caused by HP-β-CD was not so conspicuous as ethanol and DMF. Inactivation constants of ethanol, DMF, and HP-β-CD were 5.832, 4.541, and 1.216, respectively. The inactivation energy (E a) was in the order of HP-β-CD (55.1 kJ mol−1) > ethanol (39.9 kJ mol−1) > DMF (37.1 kJ mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDs:

Cyclodextrins

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

CA:

Cortisone acetate

PA:

Prednisone acetate

E a :

Inactivation energy

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

ESI-MS:

Electrospray ionization mass spectra

References

  1. Shashi, B., & Subhadra, G. (1997). Steroids, 62, 332–345. doi:10.1016/S0039-128X(96)00251-6.

    Article  Google Scholar 

  2. Simon, L. M., & Lásló, K. (1998). Journal of Molecular Catalysis. B, Enzymatic, 4, 41–45. doi:10.1016/S1381-1177(97)00019-2.

    Article  CAS  Google Scholar 

  3. Smith, M., & Zahnley, J. (1993). Applied and Environmental Microbiology, 59, 1425–1429.

    CAS  Google Scholar 

  4. Bie, S. T., & Lu, F. P. (2008). Journal of Molecular Catalysis. B, Enzymatic, 55, 1–5. doi:10.1016/j.molcatb.2007.12.017.

    Article  CAS  Google Scholar 

  5. Wang, Z., & Zhao, F. (2004). Journal of Molecular Catalysis. B, Enzymatic, 27, 147–153. doi:10.1016/j.molcatb.2003.11.002.

    Article  CAS  Google Scholar 

  6. Griebenow, K., & Laureano, Y. (1999). Journal of the American Chemical Society, 121, 8157–8163. doi:10.1021/ja990515u.

    Article  CAS  Google Scholar 

  7. Rantwijk, F. V., & Lau, R. M. (2003). Trends in Biotechnology, 21, 131–138. doi:10.1016/S0167-7799(03)00008-8.

    Article  Google Scholar 

  8. Hari, K. S. (2002). Biotechnology Advances, 20, 239–267. doi:10.1016/S0734-9750(02)00019-8.

    Article  Google Scholar 

  9. Riva, S. (2001). Current Opinion in Chemical Biology, 5, 106–111. doi:10.1016/S1367-5931(00)00178-2.

    Article  CAS  Google Scholar 

  10. Azevedo, A., & Fonseca, P. (2001). Journal of Molecular Catalysis. B, Enzymatic, 15, 147–153. doi:10.1016/S1381-1177(01)00017-0.

    Article  CAS  Google Scholar 

  11. Cruz, A., & Fernandes, P. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19, 371–375. doi:10.1016/S1381-1177(02)00188-1.

    Article  Google Scholar 

  12. Hirayama, F., & Kurihara, M. (1987). International Journal of Pharmaceutics, 35, 193–199. doi:10.1016/0378-5173(87)90130-X.

    Article  CAS  Google Scholar 

  13. Fokina, V. V., & Karpov, A. V. (1997). Applied Microbiology and Biotechnology, 47, 645–649. doi:10.1007/s002530050989.

    Article  CAS  Google Scholar 

  14. Roglič, U., & Plazl, I. (2007). Biocatalysis and Biotransformation, 25, 16–23. doi:10.1080/10242420601060954.

    Article  Google Scholar 

  15. Roglič, U., & Plazl, P. (2005). Biocatalysis and Biotransformation, 23, 299–305. doi:10.1080/10242420500175929.

    Article  Google Scholar 

  16. Jadoun, J., & Bar, R. (1993). Applied Microbiology and Biotechnology, 40, 230–240.

    CAS  Google Scholar 

  17. Singer, Y., & Shity, H. (1991). Applied Microbiology and Biotechnology, 35, 731–737. doi:10.1007/BF00169886.

    Article  CAS  Google Scholar 

  18. Choi, K. P., & Molnár, I. (1995). Journal of Biochemistry, 117, 1043–1049. doi:10.1093/jb/117.2.315.

    Article  CAS  Google Scholar 

  19. Yeates, C. A., & Krieg, H. M. (2007). Enzyme and Microbial Technology, 40, 228–235. doi:10.1016/j.enzmictec.2006.04.005.

    Article  CAS  Google Scholar 

  20. Shubhada, S., & Sundaram, P. (1995). Enzyme and Microbial Technology, 17, 330–335. doi:10.1016/0141-0229(94)00028-X.

    Article  CAS  Google Scholar 

  21. Donova, M. V., & Nikolayeva, V. M. (2007). Microbiology, 153, 1981–1992. doi:10.1099/mic.0.2006/001636-0.

    Article  CAS  Google Scholar 

  22. Nellaiah, H., & Morisseau, C. (1996). Biotechnology and Bioengineering, 49, 70–77. doi:10.1002/(SICI)1097-0290(19960105)49:1<70::AID-BIT9>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  23. Renata, F., & Vianna, M. (1998). International Journal of Pharmaceutics, 167, 205–213. doi:10.1016/S0378-5173(98)00068-4.

    Article  Google Scholar 

  24. Yeates, C. A., & Botes, A. L. (2007). Enzyme and Microbial Technology, 40, 221–227. doi:10.1016/j.enzmictec.2006.04.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 20776111), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Wang, M., Shen, Y. et al. Improvement of Steroid Biotransformation with Hydroxypropyl-β-Cyclodextrin Induced Complexation. Appl Biochem Biotechnol 159, 642–654 (2009). https://doi.org/10.1007/s12010-008-8499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8499-2

Keywords