Abstract
The inclusion complexes induced by cyclodextrins and its derivates have been shown previously to enhance the biotransformation of hydrophobic compounds. Using hydroxypropyl-β-cyclodextrin (HP-β-CD; 20% w/v), the water solubility of cortisone acetate increased from 0.039 to 7.382 g L−1 at 32 °C. The solubilization effect of HP-β-CD was far superior to dimethylformamide (DMF) and ethanol. The dissolution rate also significantly increased in the presence of HP-β-CD. The enzymatic stability of Δ1-dehydrogenase from Arthrobacter simplex TCCC 11037 was not influenced by the increasing concentrations of HP-β-CD contrary to the organic cosolvents which negatively influenced in the order DMF > ethanol. The activity inhibition effect caused by HP-β-CD was not so conspicuous as ethanol and DMF. Inactivation constants of ethanol, DMF, and HP-β-CD were 5.832, 4.541, and 1.216, respectively. The inactivation energy (E a) was in the order of HP-β-CD (55.1 kJ mol−1) > ethanol (39.9 kJ mol−1) > DMF (37.1 kJ mol−1).







Similar content being viewed by others
Abbreviations
- CDs:
-
Cyclodextrins
- HP-β-CD:
-
Hydroxypropyl-β-cyclodextrin
- CA:
-
Cortisone acetate
- PA:
-
Prednisone acetate
- E a :
-
Inactivation energy
- DMF:
-
Dimethylformamide
- DMSO:
-
Dimethyl sulfoxide
- ESI-MS:
-
Electrospray ionization mass spectra
References
Shashi, B., & Subhadra, G. (1997). Steroids, 62, 332–345. doi:10.1016/S0039-128X(96)00251-6.
Simon, L. M., & Lásló, K. (1998). Journal of Molecular Catalysis. B, Enzymatic, 4, 41–45. doi:10.1016/S1381-1177(97)00019-2.
Smith, M., & Zahnley, J. (1993). Applied and Environmental Microbiology, 59, 1425–1429.
Bie, S. T., & Lu, F. P. (2008). Journal of Molecular Catalysis. B, Enzymatic, 55, 1–5. doi:10.1016/j.molcatb.2007.12.017.
Wang, Z., & Zhao, F. (2004). Journal of Molecular Catalysis. B, Enzymatic, 27, 147–153. doi:10.1016/j.molcatb.2003.11.002.
Griebenow, K., & Laureano, Y. (1999). Journal of the American Chemical Society, 121, 8157–8163. doi:10.1021/ja990515u.
Rantwijk, F. V., & Lau, R. M. (2003). Trends in Biotechnology, 21, 131–138. doi:10.1016/S0167-7799(03)00008-8.
Hari, K. S. (2002). Biotechnology Advances, 20, 239–267. doi:10.1016/S0734-9750(02)00019-8.
Riva, S. (2001). Current Opinion in Chemical Biology, 5, 106–111. doi:10.1016/S1367-5931(00)00178-2.
Azevedo, A., & Fonseca, P. (2001). Journal of Molecular Catalysis. B, Enzymatic, 15, 147–153. doi:10.1016/S1381-1177(01)00017-0.
Cruz, A., & Fernandes, P. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19, 371–375. doi:10.1016/S1381-1177(02)00188-1.
Hirayama, F., & Kurihara, M. (1987). International Journal of Pharmaceutics, 35, 193–199. doi:10.1016/0378-5173(87)90130-X.
Fokina, V. V., & Karpov, A. V. (1997). Applied Microbiology and Biotechnology, 47, 645–649. doi:10.1007/s002530050989.
Roglič, U., & Plazl, I. (2007). Biocatalysis and Biotransformation, 25, 16–23. doi:10.1080/10242420601060954.
Roglič, U., & Plazl, P. (2005). Biocatalysis and Biotransformation, 23, 299–305. doi:10.1080/10242420500175929.
Jadoun, J., & Bar, R. (1993). Applied Microbiology and Biotechnology, 40, 230–240.
Singer, Y., & Shity, H. (1991). Applied Microbiology and Biotechnology, 35, 731–737. doi:10.1007/BF00169886.
Choi, K. P., & Molnár, I. (1995). Journal of Biochemistry, 117, 1043–1049. doi:10.1093/jb/117.2.315.
Yeates, C. A., & Krieg, H. M. (2007). Enzyme and Microbial Technology, 40, 228–235. doi:10.1016/j.enzmictec.2006.04.005.
Shubhada, S., & Sundaram, P. (1995). Enzyme and Microbial Technology, 17, 330–335. doi:10.1016/0141-0229(94)00028-X.
Donova, M. V., & Nikolayeva, V. M. (2007). Microbiology, 153, 1981–1992. doi:10.1099/mic.0.2006/001636-0.
Nellaiah, H., & Morisseau, C. (1996). Biotechnology and Bioengineering, 49, 70–77. doi:10.1002/(SICI)1097-0290(19960105)49:1<70::AID-BIT9>3.0.CO;2-Q.
Renata, F., & Vianna, M. (1998). International Journal of Pharmaceutics, 167, 205–213. doi:10.1016/S0378-5173(98)00068-4.
Yeates, C. A., & Botes, A. L. (2007). Enzyme and Microbial Technology, 40, 221–227. doi:10.1016/j.enzmictec.2006.04.004.
Acknowledgments
This work is supported by National Natural Science Foundation of China (No. 20776111), which is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, L., Wang, M., Shen, Y. et al. Improvement of Steroid Biotransformation with Hydroxypropyl-β-Cyclodextrin Induced Complexation. Appl Biochem Biotechnol 159, 642–654 (2009). https://doi.org/10.1007/s12010-008-8499-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-008-8499-2


