Skip to main content
Log in

Biodegradation of Mixed Phenolic Compounds Under High Salt Conditions and Salinity Fluctuations by Arthrobacter sp. W1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript


High salt concentration and salinity fluctuations in wastewater challenge the efficiency of microbial strains used for cleanup of pollutants. In this study, it was investigated that the new isolated Arthrobacter sp. W1 degraded mixed phenolic compounds under complex salt conditions. The results showed that Arthrobacter sp. W1 was able to utilize various phenolic compounds as carbon source under high salt conditions. It can degrade phenol and p-cresol mixture at 10% NaCl, although rates of degradation and cell growth were lower compared to 5% NaCl. The presence of trace p-cresol significantly inhibited phenol biodegradation. When salinity fluctuations were between 1% and 10% NaCl, strain W1 was able to degrade substrates and survived. It was also suggested that the presence of salts (i.e., NaCl, KCl, Na2SO4, and K2SO4) had almost no effects on the microbial growth and biodegradation process. Therefore, Arthrobacter sp. W1 would be a promising candidate for bioremediation of phenolic compounds under complex salt conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Arutchelvan, V., Kanakasabai, V., Elangovan, R., Nagarajan, S., & Muralikrishnan, V. (2006). Journal of Hazardous Materials, B129, 216–222. doi:10.1016/j.jhazmat.2005.08.040.

    Article  Google Scholar 

  2. Keith, L. H., & Telliard, W. A. (1979). Environmental Science & Technology, 13, 416–423. doi:10.1021/es60152a601.

    Article  Google Scholar 

  3. Evans, W. C. (1947). The Biochemical Journal, 41(3), 373–382.

    CAS  Google Scholar 

  4. Hill, G. A., & Robinson, C. W. (1975). Biotechnology and Bioengineering, 17, 1599–1615. doi:10.1002/bit.260171105.

    Article  CAS  Google Scholar 

  5. Westimeier, F., & Rehm, H. J. (1985). Applied Microbiology and Biotechnology, 22, 301–305. doi:10.1007/BF00582412.

    Article  Google Scholar 

  6. Jiang, Y., Wen, J., Bai, J., Jia, X. Q., & Hu, Z. D. (2007). Journal of Hazardous Materials, 147, 672–676. doi:10.1016/j.jhazmat.2007.05.031.

    Article  CAS  Google Scholar 

  7. Pawlowsky, U., & Howell, J. A. (1973). Biotechnology and Bioengineering, 25, 889–896. doi:10.1002/bit.260150506.

    Article  Google Scholar 

  8. Ehrhardt, H. M., & Rehm, H. J. (1985). Applied Microbiology and Biotechnology, 21, 32–36. doi:10.1007/BF00252358.

    Article  CAS  Google Scholar 

  9. Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Waste Management (New York, N.Y.), 22, 703–710. doi:10.1016/S0956-053X(02)00050-8.

    CAS  Google Scholar 

  10. Abuhamed, T., Bayraktar, E., Mehmetoglu, T., & Mehmetoglu, U. (2004). Process Biochemistry, 39, 983–988. doi:10.1016/S0032-9592(03)00210-3.

    Article  CAS  Google Scholar 

  11. Lovanh, N., & Alvarez, P. J. J. (2004). Biotechnology and Bioengineering, 86, 801–808. doi:10.1002/bit.20090.

    Article  CAS  Google Scholar 

  12. Kargi, F., & Uygur, A. (1996). Environmental Technology Journal, 17, 325–330. doi:10.1080/09593331708616391.

    Article  CAS  Google Scholar 

  13. Woolard, C. R., & Irvine, R. L. (1995). Water Research, 29, 1159–1168. doi:10.1016/0043-1354(94)00239-4.

    Article  CAS  Google Scholar 

  14. Peyton, B. M., Wilson, T., & Yonge, D. R. (2002). Water Research, 36, 4811–4820. doi:10.1016/S0043-1354(02)00200-2.

    Article  CAS  Google Scholar 

  15. Hinteregger, C., & Streichsbier, F. (1997). Biotechnology Letters, 19, 1099–1102. doi:10.1023/A:1018488410102.

    Article  CAS  Google Scholar 

  16. Neilan, B. A. (1995). Applied and Environmental Microbiology, 61, 2286–2291.

    CAS  Google Scholar 

  17. Karigar, C., Mahesh, A., Nagenahalli, M., & Yun, D. J. (2006). Biodegradation, 17, 47–55. doi:10.1007/s10532-005-3048-y.

    Article  CAS  Google Scholar 

  18. Backman, A., & Jansson, J. K. (2004). Microbial Ecology, 48(2), 246–253. doi:10.1007/s00248-003-2026-3.

    Article  CAS  Google Scholar 

  19. Unell, M., Nordin, K., Jernberg, C., Stenstrom, J., & Jansson, J. K. (2008). Biodegradation, 19, 495–505. doi:10.1007/s10532-007-9154-2.

    Article  CAS  Google Scholar 

  20. Kolomytseva, M. P., Baskunov, B. P., & Golovleva, L. A. (2007). Biotechnology Journal, 2(7), 886–893. doi:10.1002/biot.200700013.

    Article  CAS  Google Scholar 

  21. Santos, V. L., Heilbuth, N. M., Braga, D. T., & Linardi, V. R. (2003). Journal of Basic Microbiology, 43(3), 238–248. doi:10.1002/jobm.200390027.

    Article  CAS  Google Scholar 

  22. Polymenakou, P. N., & Stephanou, E. G (2005). Biodegradation, 16, 403–413. doi:10.1007/s10532-004-3333-1.

    Article  CAS  Google Scholar 

  23. Ely, R. L., Williamson, K. J., Guenther, R. B., Hyman, M. R., & Arp, D. J. (1995). Biotechnology and Bioengineering, 46, 218–231. doi:10.1002/bit.260460305.

    Article  CAS  Google Scholar 

  24. Ely, R. L., Hyman, M. R., Arp, D. J., Guenther, R. B., & Willianson, K. J. (1995). Biotechnology and Bioengineering, 46, 232–245. doi:10.1002/bit.260460306.

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge the financial support (no. 50608011) from the National Natural Science Foundation of China (NSFC).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yuanyuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Qu, Y. & Zhou, J. Biodegradation of Mixed Phenolic Compounds Under High Salt Conditions and Salinity Fluctuations by Arthrobacter sp. W1. Appl Biochem Biotechnol 159, 623–633 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: