Advertisement

Fifty-gigahertz Microwave Exposure Effect of Radiations on Rat Brain

  • Kavindra Kumar Kesari
  • J. BehariEmail author
Article

Abstract

The object of this study is to investigate the effects of 50-GHz microwave radiation on the brain of Wistar rats. Male rats of the Wistar strain were used in the study. Animals of 60-day age were divided into two groups—group 1, sham-exposed, and group 2, experimental (microwave-exposed). The rats were housed in a temperature-controlled room (25 °C) with constant humidity (40–50%) and received food and water ad libitum. During exposure, rats were placed in Plexiglas cages with drilled ventilation holes and kept in an anechoic chamber. The animals were exposed for 2 h a day for 45 days continuously at a power level of 0.86 μW/cm2 with nominal specific absorption rate 8.0 × 10−4 w/kg. After the exposure period, the rats were killed and homogenized, and protein kinase C (PKC), DNA double-strand break, and antioxidant enzyme activity [superoxides dismutase (SOD), catalase, and glutathione peroxidase (GPx)] were estimated in the whole brain. Result shows that the chronic exposure to these radiations causes DNA double-strand break (head and tail length, intensity and tail migration) and a significant decrease in GPx and SOD activity (p = <0.05) in brain cells, whereas catalase activity shows significant increase in the exposed group of brain samples as compared with control (p = <0.001). In addition to these, PKC decreased significantly in whole brain and hippocampus (p < 0.05). All data are expressed as mean ± standard deviation. We conclude that these radiations can have a significant effect on the whole brain.

Keywords

Glutathione peroxidase Superoxidase Catalase Microwave radiation Protein kinase C 

Notes

Acknowledgment

Authors are thankful to Council for Scientific and Industrial Research (CSIR), New Delhi, for financial assistance.

References

  1. 1.
    Stuchley, M. A. (1988). Biological effects of radiofrequency fields. In M. H. Repacholi (Ed.), Non-Ionizing Radiations, Physical characterization, Biological effects and Health Hazard Assessment. Proceeding for the International Non-Ionizing Radiation Workshop. Melbourne, pp. 197–217.Google Scholar
  2. 2.
    Kunjilwar, K. K., & Behari, J. (1993). Effect of amplitude-modulated radio frequency radiation on cholinergic system of developing rats. Brain Research, 601, 321–324. doi: 10.1016/0006-8993(93)91729-C.CrossRefGoogle Scholar
  3. 3.
    Paulraj, R., & Behari, J. (2004). Radiofrequency radiation effect on protein kinase C activity in rats brain. Mutation Research, 585, 127–131. doi: 10.1016/S0027-5107(03)00113-1.Google Scholar
  4. 4.
    Harvey, C., & French, P. W. (2000). Effects on protein kinase C and gene expression in a human mast cell line, HMC-1, following microwave exposure. Cell Biology International, 23, 739–748. doi: 10.1006/cbir.1999.0436.CrossRefGoogle Scholar
  5. 5.
    Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science, 233, 305–312. doi: 10.1126/science.3014651.CrossRefGoogle Scholar
  6. 6.
    Ohkusu, K., Isobe, K., Hidaka, H., & Nakashima, I. (1986). Elucidation of the protein kinase C-dependent apoptosis pathway in distinct of T lymphocytes in MRL-lpr/lpr mice. European Journal of Immunology, 25, 3180–3186. doi: 10.1002/eji.1830251129.CrossRefGoogle Scholar
  7. 7.
    Suzuki, T. (1994). Protein kinase involved in the expression of long-term potentiation. The International Journal of Biochemistry, 26, 735–744. doi: 10.1016/0020-711X(94)90102-3.CrossRefGoogle Scholar
  8. 8.
    Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., & Nishizuka, Y. (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumorpromoting phorbol esters. The Journal of Biological Chemistry, 78, 47–51.Google Scholar
  9. 9.
    Hunter, T., Ling, N., & Cooper, J. A. (1984). Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature, 311, 480–483. doi: 10.1038/311480a0.CrossRefGoogle Scholar
  10. 10.
    Niedel, J. E., Kuhn, L. J., & Vandenbark, G. R. (1983). Phorbol diester receptor copurifies with protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 80, 36–40. doi: 10.1073/pnas.80.1.36.CrossRefGoogle Scholar
  11. 11.
    Mahfouz, R., Sharma, R., Lackner, J., Aziz, A., & Agarwal, A. (2008). Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertility and Sterility, in press. doi: 10.1016/j.fertnstert.2008.05.087.
  12. 12.
    Behari, J., Kunjilwar, K. K., & Pyne, S. (1998). Interaction of low level modulated RF radiation with Na+–K+–ATPase. Bioelectrochemistry and Bioenergetics, 47, 247–252. doi: 10.1016/S0302-4598(98)00195-0.CrossRefGoogle Scholar
  13. 13.
    Paulraj, R., Behari, J., & Rao, A. R. (1999). Effect of 112 MHz amplitude modulated radiation on calcium ion efflux and ODC activity in chronically exposed rat brain. Indian Journal of Biochemistry & Biophysics, 36, 337–340.Google Scholar
  14. 14.
    Paulraj, R., & Behari, J. (2002). The effect of low level continuous 2.45 GHz wave on brain enzymes of developing rat brain. Electromagnetic Biology and Medicine, 21, 231–241. doi: 10.1081/JBC-120015993.CrossRefGoogle Scholar
  15. 15.
    Sarkar, S., Ali, S., & Behari, J. (1994). Effect of low power microwave on the mouse genome: a direct DNA analysis. Mutation Research, 320, 141–147. doi: 10.1016/0165-1218(94)90066-3.CrossRefGoogle Scholar
  16. 16.
    Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80. doi: 10.1016/j.mrfmmm.2005.12.006.Google Scholar
  17. 17.
    Behari, J., & Kesari, K. K. (2006). Effects of microwave radiations on reproductive system of male rats. Embryo Talk, 1, 81–85.Google Scholar
  18. 18.
    Lai, H., & Singh, N. P. (1996). Double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation. International Journal of Radiation Biology, 69, 513–521. doi: 10.1080/095530096145814.CrossRefGoogle Scholar
  19. 19.
    Singh, N. P., & Lai, H. (1998). 60-Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutation Research, 400, 313–320. doi: 10.1016/S0027-5107(98)00017-7.Google Scholar
  20. 20.
    Altman, S. A., Zastawny, T. H., Randers-Eichhorn, L., Cacciuttolo, M. A., Akman, S. A., & Dizdaroglu, M. (1995). Formation of DNAprotein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radical Biology & Medicine, 19, 897–902. doi: 10.1016/0891-5849(95)00095-F.CrossRefGoogle Scholar
  21. 21.
    Lloyd, D. R., Phillips, D. W., & Carmichael, P. L. (1997). Generation of putative intrastrand cross-links and strand breaks by transition metal ion-mediated oxygen radiacl ttack. Chemical Research in Toxicology, 10, 393–400. doi: 10.1021/tx960158q.CrossRefGoogle Scholar
  22. 22.
    Ivancsits, S., Diem, E., Pilger, A., Rudiger, H. W., & Jahn, O. (2002). Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutation Research, 519, 1–13.Google Scholar
  23. 23.
    Ivancsits, S., Diem, E., Jahn, O., & Rudiger, H. W. (2003a). Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. International Archives of Occupational and Environmental Health, 76, 431–436. doi: 10.1007/s00420-003-0446-5.CrossRefGoogle Scholar
  24. 24.
    Ivancsits, S., Diem, E., Jahn, O., & Rudiger, H. W. (2003b). Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mechanism of Ageing and Development, 124, 847–850.CrossRefGoogle Scholar
  25. 25.
    Suzuki, T. (1994). Protein kinase involved in the expression of long-term potentiation. The International Journal of Biochemistry, 26, 735–744.CrossRefGoogle Scholar
  26. 26.
    Sakuma, N., Komatsubara, Y., Takeda, H., Hirose, H., Sekijima, M., Nojima, T., & Miyakoshi, J. (2006). DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations. Bioelectromagnetics, 27, 51–57. doi: 10.1002/bem.20179.CrossRefGoogle Scholar
  27. 27.
    Vijayalaxmi, , & Obe, G. (2004). Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiation Research, 162, 481–496.CrossRefGoogle Scholar
  28. 28.
    Lowry, O. H., Resebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagent. The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  29. 29.
    Singh, N. (2003). In R. Blumenthal (Ed.), Apoptosis by DNA diffusion assay, methods in molecular medicine (chemosensitivity). Totowas: Humana.Google Scholar
  30. 30.
    Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. (2000). Single cell gel/comet assay; guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35, 206–221. doi: 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J.CrossRefGoogle Scholar
  31. 31.
    Rotilio, G. (1972). Effect of hydrogen peroxide on dismutase and catalase activity in rat liver. Biochemichistry, 11, 2187–2189.CrossRefGoogle Scholar
  32. 32.
    Alvarez, J. G., Touchstone, C. J., Blasco, L., & Storey, B. T. (1987). Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. SOD as major enzyme protectant against oxygen toxicity. Journal of Andrology, 8, 33–89.Google Scholar
  33. 33.
    Condell, R. A., & Tappel, A. L. (1993). Evidence for suitability of glutathione peroxidase as a protective enzyme: studies of oxidative damage, restoration and proteolysis. Archives of Biochemistry and Biophysics, 223, 407. doi: 10.1016/0003-9861(83)90604-5.CrossRefGoogle Scholar
  34. 34.
    Reiter, R. J. (1997). Melatonin aspects of exposure to low frequency electric and magnetic fields. Advances in electromagnetic fields in living systems (vol. 2, (pp. 1–27)). New York: Plenum.Google Scholar
  35. 35.
    Jones, D. P., Eklow, L., Thor, H., & Orrenius, S. (1981). Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2 Arch. Biochemistry & Biophysics, 210, 505–516. doi: 10.1016/0003-9861(81)90215-0.CrossRefGoogle Scholar
  36. 36.
    Chen, G., Upham, B. L., & Sun, W. (2000). Effect of electromagnetic field exposure on chemically induced differentiation of friend erythroleukemia cells. Environmental Health Perspectives, 108, 967–972. doi: 10.2307/3435056.CrossRefGoogle Scholar
  37. 37.
    Brydon, L., Petit, L., Delagrange, P., Strosberg, A. D., & Jockers, R. (2000). Functional expression of MT2 (Mel 1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology, 142, 4264–4271. doi: 10.1210/en.142.10.4264.CrossRefGoogle Scholar
  38. 38.
    Suzuki, Y. J., Forman, H. J., & Sevanian, A. (1997). Oxidants as stimulators of signal transduction. Free Radical Biology & Medicine, 22, 269–285. doi: 10.1016/S0891-5849(96)00275-4.CrossRefGoogle Scholar
  39. 39.
    Rodnight, R., Grower, H., Martinez-Millan, L., & DeSouza, D. (1982). Molecular aspects of neural transmission, learning and memory. In R. Caputto, & C. Ajmone-Marsan (Eds.), IBRO, vol. 10 (p. 125). New York: Raven.Google Scholar
  40. 40.
    Butler, A. P., Mar, P. K., McDonald, F. F., & Ramsay, R. L. (1991). Involvement of protein kinase C in the regulation of ornithine decarboxylase mRNA by phorbol esters in rat hepatoma cells. Experimental Cell Research, 194, 56–61. doi: 10.1016/0014-4827(91)90129-I.CrossRefGoogle Scholar
  41. 41.
    Byus, C. V., Kartun, K., Pieper, S. E., & Adey, W. R. (1988). Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Research, 48, 4222–4226.Google Scholar
  42. 42.
    Lai, H., & Singh, N. P. (1995). Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics, 16, 207–210. doi: 10.1002/bem.2250160309.CrossRefGoogle Scholar
  43. 43.
    Lai, H., & Singh, N. P. (2005). Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromagnetic Biology and Medicine, 24, 23–29. doi: 10.1081/JBC-200055046.CrossRefGoogle Scholar
  44. 44.
    Lai, H., & Singh, N. P. (1997a). Acute exposure to a 60-Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics, 18, 156–165. doi: 10.1002/(SICI)1521-186X(1997)18:2<156::AID-BEM8>3.0.CO;2-1.CrossRefGoogle Scholar
  45. 45.
    Nikolova, T., Czyz, J., Rolletschek, A., Blyszczuk, P., Fuchs, J., Jovtchev, G., et al. (2005). Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. ASEB J, 19(12), 1686–1688.Google Scholar
  46. 46.
    Aitken, R. J., Bennetts, L. E., & Sawyer, D. (2005). Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. International Journal of Andrology, 28, 171–179. doi: 10.1111/j.1365-2605.2005.00531.x.CrossRefGoogle Scholar
  47. 47.
    Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., & Rudiger, H. (200). Non-thermal DNA breakage by mobile-phone radiation. (1800). MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutation Research, 583(2), 178–183.Google Scholar
  48. 48.
    Agarwal, A., Deepinder, F., & Sharma, R. K. (2007). Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study. Fertility and Sterility doi: 10.1016/j.fertnstert.2007.01.166.
  49. 49.
    Agarwal, A., Deepinder, F., Sharma, R. K., Ranga, G., & Li, J. (2008). Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertility and Sterility, 89(1), 124–128. doi: 10.1016/j.fertnstert.2007.01.166.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Bioelectromagnetic Laboratory, School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations