Skip to main content
Log in

Desulfurization of Gasoline using Molecularly Imprinted Chitosan as Selective Adsorbents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

For desulfurization of gasoline, novel chitosan-based molecularly imprinted polymer (MIP) was prepared by cross-linking chitosan with epichlorohydrin in the presence of dibenzothiophene (DBT) as the template. The influence of cross-linking ratio on the specific adsorption was evaluated. The effects of the types and the amounts of porogen on selectivity of the chitosan MIP were also examined. Results showed that MIP has a higher recognition property to DBT. The maximum rebinding capacities of the MIP reached 22.69 mg g−1 in the model solution. The adsorption behaviors of the MIP including adsorption kinetics, isotherms, and thermodynamic parameters were investigated and the experimental data agreed well with the Langmuir model. The dynamical adsorption behaved in first-order kinetics. Negative values for the Gibbs free energy showed that the adsorptions were spontaneous processes. The MIP was further used to selectively adsorb organosulfur from gasoline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang, T. H., Whang, W. T., Shen, J. Y., et al. (2006). Advanced Functional Materials, 16, 1449–1456. doi:10.1002/adfm.200500823.

    Article  CAS  Google Scholar 

  2. Wang, B. H., Yin, J., Xue, M. Z., et al. (2003). Synthetic Metals, 132, 191–195. doi:10.1016/S0379-6779(02)00445-9.

    Article  CAS  Google Scholar 

  3. Yang, W., Niu, Y., Liu, C., et al. (2003). Synthetic Metals, 135–136, 183–184. doi:10.1016/S0379-6779(02)00527-1.

    Article  Google Scholar 

  4. EPA, Reducing Non-road Diesel Emissions, US Environmental Protection Agency, April 2003.

  5. Hou, Y. F., Kong, Y., & Yang, J. R. (2005). Fuel, 84, 1975–1979. doi:10.1016/j.fuel.2005.04.004.

    Article  CAS  Google Scholar 

  6. Babich, I. V., & Moulijn, J. A. (2003). Fuel, 82, 607–631. doi:10.1016/S0016-2361(02)00324-1.

    Article  CAS  Google Scholar 

  7. Hernandez-Maldonado, A. J., & Yang, R. T. (2004). Industrial & Engineering Chemistry Research, 43, 1081–1087. doi:10.1021/ie034206v.

    Article  CAS  Google Scholar 

  8. Salem, S. H., & Hamid, H. S. (1997). Chemical Engineering & Technology, 20, 342–347. doi:10.1002/ceat.270200511.

    Article  CAS  Google Scholar 

  9. Ma, X. L., Velu, S., Kim, J. H., et al. (2005). Applied Catalysis B Environmental, 56, 137–147. doi:10.1016/j.apcatb.2004.08.013.

    Article  CAS  Google Scholar 

  10. Caro, E., Marcé, R. M., & Peter, A. G. (2004). Journal of Chromatography A, 1047, 175–180.

    CAS  Google Scholar 

  11. Hunnius, M., Rufińska, A., & Maier, W. F. (1999). Microporous and Mesoporous Materials, 29, 389–403. doi:10.1016/S1387-1811(99)00008-6.

    Article  CAS  Google Scholar 

  12. Weetall, H. H., & Rogers, K. R. (2004). Talanta, 62, 329–335. doi:10.1016/j.talanta.2003.07.014.

    Article  CAS  Google Scholar 

  13. Castro, B., Whitcombe, M. J., & Vulfson, E. N. (2001). Analytica Chimica Acta, 435, 83–90. doi:10.1016/S0003-2670(01)00799-1.

    Article  CAS  Google Scholar 

  14. Chang, Y. H., Liu, B., & Ying, H. J. (2003). Ion Exchange and Adsorption, 19, 450–456.

    CAS  Google Scholar 

  15. Aburto, J., Mendez-Orozco, A., & Borgne, S. L. (2004). Chemical Engineering and Processing, 43, 1587–1595. doi:10.1016/j.cep.2004.02.006.

    Article  CAS  Google Scholar 

  16. Wan Ngah, W. S., Ab Ghani, S., & Kamari, A. (2005). Bioresource Technology, 96, 443–450. doi:10.1016/j.biortech.2004.05.022.

    Article  CAS  Google Scholar 

  17. Baroni, P., Vieira, R. S., & Meneghetti, E. (2008). Journal of Hazardous Materials, 152, 1155–1163. doi:10.1016/j.jhazmat.2007.07.099.

    Article  CAS  Google Scholar 

  18. Varmaa, A. J., Deshpandea, S. V., & Kennedy, J. F. (2004). Carbohydrate Polymers, 55, 77–93. doi:10.1016/j.carbpol.2003.08.005.

    Article  Google Scholar 

  19. Xia, Y. Q., Guo, T. Y., & Song, M. D. (2008). Reactive & Functional Polymers, 68, 63–69. doi:10.1016/j.reactfunctpolym.2007.10.018.

    Article  CAS  Google Scholar 

  20. Umpleby, R. J., Baxter, S. C., & Bode, M. (2001). Polymers. Analytica Chimica Acta, 435, 35–42. doi:10.1016/S0003-2670(00)01211-3.

    Article  CAS  Google Scholar 

  21. Wong, Y. C., Szeto, Y. S., & Cheung, W. H. (2003). Langmuir, 19, 7888–7894. doi:10.1021/la030064y.

    Article  CAS  Google Scholar 

  22. Velu, S., Watanabe, S., & Ma, X. (2003). American Chemical Society Division of Petroleum Chemistry Preprints, 48, 56–57.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Graduate Student Innovation Project of Jiansu Province (Proj. NO. xm04-45) and the Major State Basic Research Development Program of China (973 Program NO.2007CB714305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Zhang, L., Ying, H. et al. Desulfurization of Gasoline using Molecularly Imprinted Chitosan as Selective Adsorbents. Appl Biochem Biotechnol 160, 593–603 (2010). https://doi.org/10.1007/s12010-008-8441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8441-7

Keywords

Navigation