Applied Biochemistry and Biotechnology

, Volume 160, Issue 2, pp 539–551 | Cite as

Pretreatment of Rice Straw by a Hot-Compressed Water Process for Enzymatic Hydrolysis

  • Guoce Yu
  • Shinichi Yano
  • Hiroyuki Inoue
  • Seiichi Inoue
  • Takashi Endo
  • Shigeki Sawayama
Article

Abstract

Hot-compressed water (HCW) is among several cost-effective pretreatment processes of lignocellulosic biomass for enzymatic hydrolysis. The present work investigated the characteristics of HCW pretreatment of rice straw including sugar production and inhibitor formation in the liquid fraction and enzymatic hydrolysis of pretreated material. Pretreatment was carried out at a temperature ranging from 140 to 240 °C for 10 or 30 min. Soluble oligosaccharides were found to constitute almost all the components of total sugars in the liquid fraction. The maximal production of total glucose at 180 °C and below accounted for 4.4–4.9% of glucan in raw material. Total xylose production peaked at 180 °C, accounting for 43.3% of xylan in raw material for 10-min pretreatment and 29.8% for 30-min pretreatment. The production of acetic acid increased at higher temperatures and longer treatment time, indicating more significant disruption of lignocellulosic structure, and furfural production achieved the maximum (2.8 mg/ml) at 200 °C for both 10-min and 30-min processes. The glucose yield by enzymatic hydrolysis of pretreated rice straw was no less than 85% at 180 °C and above for 30-min pretreatment and at 200 °C and above for 10-min pretreatment. Considering sugar recovery, inhibitor formation, and process severity, it is recommended that a temperature of 180 °C for a time of 30 min can be the most efficient process for HCW pretreatment of rice straw.

Keywords

Rice straw Pretreatment Hot-compressed water Sugar production Inhibitor formation Enzymatic hydrolysis Fermentation 

References

  1. 1.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686. doi:10.1016/j.biortech.2004.06.025.CrossRefGoogle Scholar
  2. 2.
    Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 1959–1966. doi:10.1016/j.biortech.2005.01.010.CrossRefGoogle Scholar
  3. 3.
    Bobleter, O. (1994). Progress in Polymer Science, 19, 797–841. doi:10.1016/0079-6700(94)90033–7.CrossRefGoogle Scholar
  4. 4.
    Weil, J., Westgate, P., Kohlmann, K., & Ladisch, M. R. (1994). Enzyme and Microbial Technology, 16, 1002–1004. doi:10.1016/0141-0229(94)90012-4.CrossRefGoogle Scholar
  5. 5.
    Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Bioresource Technology, 96, 1986–1993. doi:10.1016/j.biortech.2005.01.013.CrossRefGoogle Scholar
  6. 6.
    Bobleter, O., Niesner, R., & Rohr, M. (1976). Journal of Applied Polymer Science, 20, 2083–2093. doi:10.1002/app.1976.070200805.CrossRefGoogle Scholar
  7. 7.
    Bobleter, O., & Concin, R. (1979). Cellulose Chemistry and Technology, 13, 583–593.Google Scholar
  8. 8.
    Hormeyer, H. F., Tailliez, P., Millet, J., Girard, H., Bonn, G., Bobleter, O., et al. (1988). Applied Microbiology and Biotechnology, 29, 528–535. doi:10.1007/BF00260980.CrossRefGoogle Scholar
  9. 9.
    Walch, E., Zemann, A., Schinner, F., Bonn, G., & Bobleter, O. (1992). Bioresource Technology, 39, 173–177. doi:10.1016/0960-8524(92)90137-M.CrossRefGoogle Scholar
  10. 10.
    Mok, W. S.-L., & Antal, M. J. Jr. (1992). Industrial & Engineering Chemistry Research, 31, 1157–1161. doi:10.1021/ie00004a026.CrossRefGoogle Scholar
  11. 11.
    Allen, S. G., Kam, L. C., Zemann, A. J., & Antal, M. J. Jr. (1996). Industrial & Engineering Chemistry Research, 35, 2709–2715. doi:10.1021/ie950594s.CrossRefGoogle Scholar
  12. 12.
    van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J. Jr., & Lynd, L. R. (1996). Applied Biochemistry and Biotechnology, 57/58, 157–170. doi:10.1007/BF02941696.CrossRefGoogle Scholar
  13. 13.
    Weil, J., Sarikaya, A., Rau, S.-L., Goetz, J., Ladisch, C., Brewer, M., et al. (1997). Applied Biochemistry and Biotechnology, 68, 21–40. doi:10.1007/BF02785978.CrossRefGoogle Scholar
  14. 14.
    Weil, J. R., Brewer, M., Hendrickson, R., Sarikaya, A., & Ladisch, M. R. (1998). Applied Biochemistry and Biotechnology, 70–72, 99–111. doi:10.1007/BF02920127.CrossRefGoogle Scholar
  15. 15.
    Weil, J. R., Sarikaya, A., Rau, S.-L., Goetz, J., Ladisch, C. M., Brewer, M., et al. (1998). Applied Biochemistry and Biotechnology, 73, 1–17. doi:10.1007/BF02788829.CrossRefGoogle Scholar
  16. 16.
    Ando, H., Sakaki, T., Kokusho, T., Shibata, M., Uemura, Y., & Hatate, Y. (2000). Industrial & Engineering Chemistry Research, 39, 3688–3693. doi:10.1021/ie0000257.CrossRefGoogle Scholar
  17. 17.
    Allen, S. G., Schulman, D., Lichwa, J., & Antal, M. J. Jr. (2001). Industrial & Engineering Chemistry Research, 40, 2934–2941. doi:10.1021/ie990831h.CrossRefGoogle Scholar
  18. 18.
    Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J. Jr., & Lynd, L. R. (2002). Bioresource Technology, 81, 33–44. doi:10.1016/S0960-8524(01)00103-1.CrossRefGoogle Scholar
  19. 19.
    Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabanas, A., & Ballesteros, M. (2003). Applied Biochemistry and Biotechnology, 105–108, 87–100. doi:10.1385/ABAB:105:1-3:87.CrossRefGoogle Scholar
  20. 20.
    Mosier, N. S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., et al. (2005). Applied Biochemistry and Biotechnology, 125, 77–97. doi:10.1385/ABAB:125:2:077.CrossRefGoogle Scholar
  21. 21.
    Liu, C., & Wyman, C. E. (2005). Bioresource Technology, 96, 1978–1985. doi:10.1016/j.biortech.2005.01.012.CrossRefGoogle Scholar
  22. 22.
    Dien, B. S., Li, X. -L., Iten, L. B., Jordan, D. B., Nichols, N. N., O’Bryan, P. J., et al. (2006). Enzyme and Microbial Technology, 39, 1137–1144. doi:10.1016/j.enzmictec.2006.02.022.CrossRefGoogle Scholar
  23. 23.
    Cara, C., Romero, I., Oliva, J. M., Saez, F., & Castro, E. (2007). Applied Biochemistry and Biotechnology, 136–140, 379–394. doi:10.1007/s12010-007-9066-y.CrossRefGoogle Scholar
  24. 24.
    Liamsakul, W., Zemann, A., & Bobleter, O. (1994). In A. V. Bridgewater (Ed.), Advances in Thermochemical Biomass Conversion (pp. 1545–1557). London: Blackie Academic and Professional.Google Scholar
  25. 25.
    Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 321, 523–536. doi:10.1098/rsta.1987.0029.CrossRefGoogle Scholar
  26. 26.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2006). Determination of structural carbohydrates and lignin in biomass, laboratory analytical procedure. Golden, CO: National Renewable Energy Laboratory.Google Scholar
  27. 27.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of sugars, byproducts, and degradation products in liquid fraction process samples, laboratory analytical procedure. Golden, CO: National Renewable Energy Laboratory.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Guoce Yu
    • 1
    • 2
  • Shinichi Yano
    • 1
  • Hiroyuki Inoue
    • 1
  • Seiichi Inoue
    • 1
  • Takashi Endo
    • 1
  • Shigeki Sawayama
    • 1
  1. 1.Biomass Technology Research CenterNational Institute of Advanced Industrial Science and TechnologyKureJapan
  2. 2.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina

Personalised recommendations