Skip to main content

Advertisement

Log in

Biosorption of Cr(VI) from Water Using Biomass of Aeromonas hydrophila: Central Composite Design for Optimization of Process Variables

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential use of biomass of Aeromonas hydrophila for biosorption of chromium from aqueous solution was investigated. The variables (pH, initial Cr(VI) concentration, biomass dose, and temperature) affecting process were optimized by performing minimum number of experimental runs with the help of central composite design. The results predicted by design were found to be in good agreement (R 2 = 99.1%) with those obtained by performing experiments. Multiple regression analysis shows that uptake decreases with increase in pH and biomass dose, whereas it increases with increase in temperature and concentration. The maximum removal of Cr(VI) predicted by contour and optimization plots was 184.943 mg/g at pH 1.5, initial Cr(VI) concentration 311.97 mg/L, temperature 60 °C, and biomass dose 1.0 g. The removal of Cr(VI) was governed by adsorption of Cr(VI) as well as its reduction into Cr(III), which further gets adsorbed. The sorption capacity of biomass was calculated from experimental data using Langmuir sorption model and was found to be 151.50 mg/g at 40 °C and pH 1.5, which is comparable to other biosorbents. In addition to this, Dubinin–Radushkevich model was applied, and it was found that nature of sorption was chemisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Volesky, B., & Holan, Z. R. (1995). Biotechnology Progress, 11, 235–250. doi:10.1021/bp00033a001.

    Article  CAS  Google Scholar 

  2. Gupta, V. K., Singh, P., & Rahman, N. (2004). Journal of Colloid and Interface Science, 275(2), 398–402. doi:10.1016/j.jcis.2004.02.046.

    Article  CAS  Google Scholar 

  3. Volesky, B. (2001). Hydrometallurgy, 59, 203–216. doi:10.1016/S0304-386X(00)00160-2.

    Article  CAS  Google Scholar 

  4. Viera, R. H. S. F., & Volesky, B. (2000). International Microbiology, 3, 17–24.

    Google Scholar 

  5. Demirbas, E., Kobya, M., Senturk, E., & Ozkan, T. (2004). Water S.A, 30(4), 533–540.

    CAS  Google Scholar 

  6. Gupta, V. K., & Ali, I. (2004). Journal of Colloid and Interface Science, 271, 321–328. doi:10.1016/j.jcis.2003.11.007.

    Article  CAS  Google Scholar 

  7. Bishnoi, N. R., Bajaj, M., Sharma, N., & Gupta, A. (2004). Bioresource Technology, 91, 305–307. doi:10.1016/S0960-8524(03)00204-9.

    Article  CAS  Google Scholar 

  8. Gupta, V. K., Mohan, D., & Sharma, S. (1998). Separation Science and Technology, 33(9), 1331–1343. doi:10.1080/01496399808544986.

    Article  CAS  Google Scholar 

  9. Gupta, V. K., & Rastogi, A. (2008). Journal of Hazardous Materials, 152(1), 407–414. doi:10.1016/j.jhazmat.2007.07.028.

    Article  CAS  Google Scholar 

  10. Gupta, V. K., & Rastogi, A. (2008). Journal of Hazardous Materials, in press.

  11. Mohan, D., & Pittman Jr., C. U. (2006). Journal of Hazardous Materials, 137(B), 762–811.

    Article  CAS  Google Scholar 

  12. Vijayaraghavan, K., & Yun, Y. S. (2008). Biotechnology Advances, 26, 266–291. doi:10.1016/j.biotechadv.2008.02.002.

    Article  CAS  Google Scholar 

  13. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Bioresource Technology, 99, 6017–6027. doi:10.1016/j.biortech.2007.11.064.

    Article  CAS  Google Scholar 

  14. Demirbas, A. (2008). Journal of Hazardous Materials, 157, 220–229. doi:10.1016/j.jhazmat.2008.01.024.

    Article  CAS  Google Scholar 

  15. Ahluwalia, S. S., & Goyal, D. (2007). Bioresource Technology, 98, 2243–2257. doi:10.1016/j.biortech.2005.12.006.

    Article  CAS  Google Scholar 

  16. Gupta, V. K., & Ali, I. (2006). Encyclopedia of surface and colloid science (pp. 149–184, 2nd ed.). New York: Taylor & Francis.

    Google Scholar 

  17. Ali, I., & Gupta, V. K. (2006). Nature Protocols, 1(6), 2661–2667. doi:10.1038/nprot.2006.370.

    Article  CAS  Google Scholar 

  18. Miranda, C. D., & Castillo, G. (1998). The Science of the Total Environment, 224, 167–176. doi:10.1016/S0048-9697(98)00354-4.

    Article  CAS  Google Scholar 

  19. Loukidou, M. X., Zouboulis, A. I., Karapantsios, T. D., & Matis, K. A. (2004). Colloids and Surfaces A: Physicochemical Engineering Aspects, 242, 93–104. doi:10.1016/j.colsurfa.2004.03.030.

    Article  CAS  Google Scholar 

  20. Preetha, B., & Viruthagiri, T. (2007). Journal of Hazardous Materials, 143, 506–510. doi:10.1016/j.jhazmat.2006.09.077.

    Article  CAS  Google Scholar 

  21. Ravikumar, K., Ramalingam, S., Krishnan, S., & Balu, K. (2006). Dyes and Pigments, 70, 18–26. doi:10.1016/j.dyepig.2005.02.004.

    Article  CAS  Google Scholar 

  22. Box, G. E. P., & Hunter, J. S. (1957). Annals of Mathematical Statistics, 28, 195–241. doi:10.1214/aoms/1177707047.

    Article  Google Scholar 

  23. Park, D., Yun, Y. S., Jo, J. H., & Park, J. M. (2005). Water Research, 39, 533–540. doi:10.1016/j.watres.2004.11.002.

    Article  CAS  Google Scholar 

  24. Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Chemical Engineering Journal, 137(3), 462–470. doi:10.1016/j.cej.2007.04.031.

    Article  CAS  Google Scholar 

  25. Azargohar, R., & Dalai, A. K. (2005). Microporous and Mesoporous Materials, 85, 219–225. doi:10.1016/j.micromeso.2005.06.018.

    Article  CAS  Google Scholar 

  26. Kumar, A., Prasad, B., & Mishra, I. M. (2008). Journal of Hazardous Materials, 150(1), 174–182. doi:10.1016/j.jhazmat.2007.09.043.

    Article  CAS  Google Scholar 

  27. MINITAB® Release 15 Statistical Software for Windows (2006) Minitab Inc., USA.

  28. Huiping, L., Guoqun, Z., Shanting, N., & Yiguo, L. (2007). Computational Materials Science, 38(3), 561–570. doi:10.1016/j.commatsci.2006.03.014.

    Article  Google Scholar 

  29. Garg, U. K., Kaur, M. P., Garg, V. K., & Sud, D. (2008). Bioresource Technology, 99(5), 1325–1331. doi:10.1016/j.biortech.2007.02.011.

    Article  CAS  Google Scholar 

  30. Ravikumar, K., Krishnan, S., Ramalingam, S., & Balu, K. (2007). Dyes and Pigments, 72, 66–74. doi:10.1016/j.dyepig.2005.07.018.

    Article  Google Scholar 

  31. Zulkali, M. M. D., Ahmad, A. L., & Norulakmal, N. H. (2006). Bioresource Technology, 97, 21–25. doi:10.1016/j.biortech.2005.02.007.

    Article  CAS  Google Scholar 

  32. Pokhrel, D., & Viraraghvan, T. (2006). Water, Air, and Soil Pollution, 173, 195–208. doi:10.1007/s11270-005-9056-z.

    Article  CAS  Google Scholar 

  33. Mor, S., Ravindra, K., & Bishnoi, N. R. (2007). Bioresource Technology, 98, 954–957. doi:10.1016/j.biortech.2006.03.018.

    Article  CAS  Google Scholar 

  34. Hasan, S. H., Singh, K. K., Prakash, O., Talat, M., & Ho, Y. S. (2008). Journal of Hazardous Materials, 152, 356–365. doi:10.1016/j.jhazmat.2007.07.006.

    Article  CAS  Google Scholar 

  35. Daneshvar, N., Salari, D., & Aber, S. (2002). Journal of Hazardous Materials, 94, 49–61. doi:10.1016/S0304-3894(02)00054-7.

    Article  CAS  Google Scholar 

  36. Park, D., Lim, S. R., Yun, Y.-S., & Park, J. M. (2007). Chemosphere, 70(2), 298–305. doi:10.1016/j.chemosphere.2007.06.007.

    Article  CAS  Google Scholar 

  37. El-Shafey, E. I. (2005). Water, Air, and Soil Pollution, 163, 81–102. doi:10.1007/s11270-005-8136-4.

    Article  CAS  Google Scholar 

  38. Langmuir, I. (1918). Journal of the American Chemical Society, 40, 1361–1368. doi:10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  39. Dubinin, M. M., & Radushkevich, L. V. (1947). Proceedings of the Academy of Sciences of the USSR. Chemistry Section, 55, 331–333.

    Google Scholar 

  40. Onyango, M. S., Kojima, Y., Kumar, A., & Kuchar, D. (2006). Separation Science and Technology, 41, 683–704. doi:10.1080/01496390500527019.

    Article  CAS  Google Scholar 

  41. Kiran, B., Kaushik, A., & Kaushik, C. P. (2007). Chemical Engineering Journal, 126, 147–153. doi:10.1016/j.cej.2006.09.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Institute of Technology, Banaras Hindu University and University Grant Commission (UGC) (F.No. 32-224/2006 (SR)) for laboratory facilities and financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjan, D., Srivastava, P., Talat, M. et al. Biosorption of Cr(VI) from Water Using Biomass of Aeromonas hydrophila: Central Composite Design for Optimization of Process Variables. Appl Biochem Biotechnol 158, 524–539 (2009). https://doi.org/10.1007/s12010-008-8404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8404-z

Keywords

Navigation