Applied Biochemistry and Biotechnology

, Volume 160, Issue 2, pp 360–369 | Cite as

Influence of High Solid Concentration on Enzymatic Hydrolysis and Fermentation of Steam-Exploded Corn Stover Biomass

  • Yifeng Lu
  • Yonghong Wang
  • Guoqian Xu
  • Ju Chu
  • Yingping Zhuang
  • Siliang Zhang
Article

Abstract

Steam-exploded corn stover biomass was used as the substrate for fed-batch separate enzymatic hydrolysis and fermentation (SHF) to investigate the solid concentration ranging from 10% to 30% (w/w) on the lignocellulose enzymatic hydrolysis and fermentation. The treatment of washing the steam-exploded material was also evaluated by experiments. The results showed that cellulose conversion changed little with increasing solid concentration, and fermentation by Saccharomyces cerevisiae revealed a nearly same ethanol yield with the water-washed steam-exploded corn stover. For the washed material at 30% substrate concentration, i.e., 30% water insoluble solids (WIS), enzymatic hydrolysis yielded 103.3 g/l glucose solution and a cellulose conversion of 72.5%, thus a high ethanol level up to 49.5 g/l. With the unwashed steam-exploded corn stover, though a cellulose conversion of 70.9% was obtained in hydrolysis at 30% solid concentration (27.9% WIS), its hydrolysate did not ferment at all, and the hydrolysate of 20% solid loading containing 3.3 g/l acetic acid and 145 mg/l furfural already exerted a strong inhibition on the fermentation and ethanol production.

Keywords

Bioethanol Corn stover High solid concentration Enzymatic hydrolysis Fermentation 

References

  1. 1.
    Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/Biotechnology, 108, 41–65.CrossRefGoogle Scholar
  2. 2.
    Varga, E., Klinke, H., Réczey, K., & Thomsen, A. B. (2004). High solids simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88, 567–574. doi:10.1002/bit.20222.CrossRefGoogle Scholar
  3. 3.
    Alexander, E., Farrell, D., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., et al. (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508. doi:10.1126/science.1121416.CrossRefGoogle Scholar
  4. 4.
    Öhgren, K., Rudolf, A., Galbe, M., & Zacchi, G. (2006). Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass and Bioenergy, 30, 863–869. doi:10.1016/j.biombioe.2006.02.002.CrossRefGoogle Scholar
  5. 5.
    Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966. doi:10.1016/j.biortech.2005.01.010.CrossRefGoogle Scholar
  6. 6.
    Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 19, 1109–1117. doi:10.1021/bp0340180.CrossRefGoogle Scholar
  7. 7.
    Torget, R., Walter, P. J., Himmel, M., & Grohmann, K. (1991). Dilute-acid pretreatment of corn residues and short rotation woody crops. Applied Biochemistry and Biotechnology, 28/29, 75–86.CrossRefGoogle Scholar
  8. 8.
    Schell, D. J., Walter, P. J., & Johnson, D. K. (1992). Dilute sulfuric acid pretreatment of corn stover at high solids concentrations. Applied Biochemistry and Biotechnology, 34/35, 659–665.CrossRefGoogle Scholar
  9. 9.
    Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18, 189–199. doi:10.1016/S0961-9534(99)00091-4.CrossRefGoogle Scholar
  10. 10.
    Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Modelling and optimization of the diluted-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 59, 129–136. doi:10.1016/S0960-8524(97)81606-9.CrossRefGoogle Scholar
  11. 11.
    Kalman, G., Varga, E., & Reczey, K. (2002). Diluted sulphuric acid pretreatment of corn stover at long residence times. Chem Biochem Eng Q, 16, 151–157.Google Scholar
  12. 12.
    Bayrock, D. P., & Ingledew, W. M. (2001). Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. Journal of Industrial Microbiology & Biotechnology, 27, 87–93. doi:10.1038/sj.jim.7000167.CrossRefGoogle Scholar
  13. 13.
    Schell, D. (2005). 2005 OBP biennial peer review, energy efficiency and renewable energy. http://programreview.biomass.govtools.us/%5Cdocuments%5C11e80e62-6e8a-4858-a0e5-1fa75a591116.ppt
  14. 14.
    Zacchi, G., & Axelsson, A. (1989). Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnology and Bioengineering, 34, 223–233. doi:10.1002/bit.260340211.CrossRefGoogle Scholar
  15. 15.
    Fan, Z. L., South, C., Lyford, K., Munsie, J., van Walsum, P., & Lynd, L. R. (2003). Conversion of paper sludge to ethanol in a semicontinuous solids-fedreactor. Bioprocess and Biosystems Engineering, 26, 93–101. doi:10.1007/s00449-003-0337-x.CrossRefGoogle Scholar
  16. 16.
    Rudolf, A., Alkasrawi, M., Zacchi, G., & Liden, G. (2005). A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 37, 195–204. doi:10.1016/j.enzmictec.2005.02.013.CrossRefGoogle Scholar
  17. 17.
    Varga, E., Klinke, H. B., Reczey, K., & Thomsen, A. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88, 567–574. doi:10.1002/bit.20222.CrossRefGoogle Scholar
  18. 18.
    Wayman, M., Parekh, S., Chornet, E., & Overend, R. P. (1986). SO2-catalysed prehydrolysis of coniferous wood for ethanol production. Biotechnology Letters, 8, 749–752. doi:10.1007/BF01032576.CrossRefGoogle Scholar
  19. 19.
    Jørgensen, H., Vibe, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870. doi:10.1002/bit.21115.CrossRefGoogle Scholar
  20. 20.
    Tolan, J. S. (2002). Iogen’s process for producing ethanol from cellulosic biomass. Clean Technol Environ Policy, 3, 339–345. doi:10.1007/s10098-001-0131-x.CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology, 98/100, 641–654. doi:10.1385/ABAB:98-100:1-9:641.CrossRefGoogle Scholar
  22. 22.
    Dien, B. S., Li, L., Iten, L. B., Jordan, D. B., Nichols, N. N., O’Bryan, P. J., et al. (2006). Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme and Microbial Technology, 39, 1137–1144. doi:10.1016/j.enzmictec.2006.02.022.CrossRefGoogle Scholar
  23. 23.
    Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26. doi:10.1007/s00253-004-1642-2.CrossRefGoogle Scholar
  24. 24.
    Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hagerdal, B. (1999). Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 63, 46–55. doi:10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J.CrossRefGoogle Scholar
  25. 25.
    National Renewable Energy Laboratory (NREL). Chemical analysis and testing laboratory analytical procedures, LAP-002 (1996), LAP-003 (1995), LAP-004 (1996), LAP-005 (1994), LAP-010 (1994) and LAP-017 (1998), NREL, Golden, CO, USA. http://www.eere.energy.gov/biomass/analytical_procedures.html.
  26. 26.
    Öhgren, K., Bengtsson, O., Gorwa, M. F., Galbe, M., Hahn, B., & Zacchi, G. (2006). Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology, 126, 488–498. doi:10.1016/j.jbiotec.2006.05.001.CrossRefGoogle Scholar
  27. 27.
    Linde, M., Galbe, M., & Zacchi, G. (2007). Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme and Microbial Technology, 40, 1100–1107. doi:10.1016/j.enzmictec.2006.08.014.CrossRefGoogle Scholar
  28. 28.
    Kim, S. H., & Holtzapple, M. T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology, 96, 1994–2006. doi:10.1016/j.biortech.2005.01.014.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Yifeng Lu
    • 1
  • Yonghong Wang
    • 1
  • Guoqian Xu
    • 1
  • Ju Chu
    • 1
  • Yingping Zhuang
    • 1
  • Siliang Zhang
    • 1
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations