Abstract
Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing–thawing method. Entrapment experiments were planned according to a 23 full factorial design, using the PVA concentration (80, 100, and 120 g L−1), the freezing temperature (−10, −15, and −20 °C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 °C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L−1, a xylitol yield on consumed xylose of 0.49 g g−1 and a xylitol volumetric productivity of 0.24 g L−1 h−1 were obtained.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mäkinen, K. K. (2000). Medical Hypotheses, 54, 603–613. doi:10.1054/mehy.1999.0904.
Choi, J.-H., Moon, K.-H., Ryu, Y.-W., & Seo, J.-H. (2000). Biotechnology Letters, 22, 1625–1628. doi:10.1023/A:1005693427389.
Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1998). Bioresource Technology, 65, 191–201. doi:10.1016/S0960-8524(98)00038-8.
Granström, T. B., Izumori, K., & Leisola, M. (2007). Applied Microbiology and Biotechnology, 74, 273–276. doi:10.1007/s00253-006-0760-4.
Sene, L., Converti, A., Felipe, M. G. A., & Silva, S. S. (2001). Applied Microbiology and Biotechnology, 57, 738–743. doi:10.1007/s002530100816.
Converti, A., & Domínguez, J. M. (2001). Biotechnology and Bioengineering, 75, 39–45. doi:10.1002/bit.1162.
Verbelen, P. J., Schutter, D. P., Delvaux, F., Verstrepen, K. J., & Delvaux, F. R. (2006). Biotechnology Letters, 28, 1515–1525.
Skowronek, M., & Fiedurek, J. (2006). Enzyme and Microbial Technology, 38, 162–167. doi:10.1016/j.enzmictec.2005.05.011.
Piyushkumar, M., Kiran, D., & Lele, S. S. (2007). Bioresource Technology, 98, 2892–2896. doi:10.1016/j.biortech.2006.09.046.
Lozinsky, V. I., Zubov, A. L., & Titola, E. F. (1997). Enzyme and Microbial Technology, 20, 182–190. doi:10.1016/S0141-0229(96)00110-X.
Chang, C. C., & Tseng, S. K. (1998). Biotechnology Techniques, 12, 865–868. doi:10.1023/A:1008895525476.
Carvalho, W., Santos, J. C., Canilha, L., Almeida-Silva, J. B., Felipe, M. G. A., Mancilha, I. M., et al. (2004). Process Biochemistry, 39, 2135–2141. doi:10.1016/j.procbio.2003.11.021.
Santos, J. C., Mussato, S. I., Dragone, G., Converti, A., & Silva, S. S. (2005). Biochemical Engineering Journal, 23, 1–9. doi:10.1016/j.bej.2004.10.001.
Cunha, M. A. A., Converti, A., Santos, J. C., & Silva, S. S. (2006). World Journal of Microbiology & Biotechnology, 22, 65–72. doi:10.1007/s11274-005-6812-6.
Santos, J. C., Pinto, I. R. G., Carvalho, W., Mancilha, I. M., Felipe, M. G. A., & Silva, S. S. (2005). Applied Biochemistry and Biotechnology, 122, 673–684. doi:10.1385/ABAB:122:1-3:0673.
Lozinsky, V. I., & Plieva, F. M. (1998). Enzyme and Microbial Technology, 23, 227–242. doi:10.1016/S0141-0229(98)00036-2.
Szczesna, M. A., & Galas, E. (2001). Biomolecular Engineering, 17, 55–63. doi:10.1016/S1389-0344(00)00065-4.
Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33. doi:10.1016/0960-8524(95)00122-0.
Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1998). Bioresource Technology, 66, 25–40. doi:10.1016/S0960-8524(98)00037-6.
Alves, L. A., Felipe, M. G. A., Silva, J. B. A., Silva, S. S., & Prata, A. M. R. (1998). Applied Biochemistry and Biotechnology, 70–72, 89–98.
Pessoa, A., Mancilha, I. M., & Sato, S. (1997). Brazilian Journal of Chemical Engineering, 14, 291–297. doi:10.1590/S0104--66321997000300013.
Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., & Lee, H. (1988). Journal of Industrial Microbiology, 3, 241–251. doi:10.1007/BF01569582.
Barros-Neto, B. (2003). In B. Barros-Neto, I. S. Scarminio, & R. E. Bruns (Eds.), Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria (pp. 83–148, 2nd ed.). Campinas, Brazil: Editora da UNICAMP.
Santos, J. C., Carvalho, W., Silva, S. S., & Converti, A. (2003). Biotechnology Progress, 19, 1210–1215. doi:10.1021/bp034042d.
Santos, J. C., Converti, A., Carvalho, W., Mussatto, S. I., & Silva, S. S. (2005). Process Biochemistry, 40, 113–118. doi:10.1016/j.procbio.2003.11.045.
Carvalho, W., Santos, J. C., Canilha, L., Silva, S. S., Perego, P., & Converti, A. (2005). Biochemical Engineering Journal, 25, 25–31. doi:10.1016/j.bej.2005.03.006.
Pirt, S. J. (1975). Principles of microbe and cell cultivation pp. 1–30. New York: Wiley.
Carvalho, W., Silva, S. S., Converti, A., Vitolo, M., Felipe, M. G. A., Roberto, I. C., et al. (2002). Applied Biochemistry and Biotechnology, 98-100, 489–496. doi:10.1385/ABAB:98-100:1-9:489.
Santos, J. C., Mussato, S. I., Cunha, M. A. A., & Silva, S. S. (2005). Biotechnology Progress, 21, 1639–1643. doi:10.1021/bp050219n.
Santos, J. C., Silva, S. S., Mussatto, S. I., Carvalho, W., & Cunha, M. A. A. (2005). World Journal of Microbiology & Biotechnology, 21, 531–535. doi:10.1007/s11274--004--3490--8.
Bicho, P. A., Runnals, P. L., Cunningham, J. D., & Lee, H. (1988). Applied and Environmental Microbiology, 54, 50–54.
Sene, L., Felipe, M. G. A., & Vitolo, M. (2001). Applied Biochemistry and Biotechnology, 91–93, 671–680. doi:10.1385/ABAB:91-93:1-9:671.
Morita, T. A., & Silva, S. S. (2000). Applied Biochemistry and Biotechnology, 84–86, 801–808. doi:10.1385/ABAB:84-86:1-9:801.
Paz, E. D. D., Santana, M. H. A., & Eguchi, S. Y. (1993). Applied Biochemistry and Biotechnology, 39–40, 455–466.
Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., & Mancilha, I. M. (1995). Journal of Basic Microbiology, 35, 171–177. doi:10.1002/jobm.3620350309.
Felipe, M. G. A., Alves, L. A., Silva, S. S., & Roberto, I. C. (1996). Bioresource Technology, 56, 281–283. doi:10.1016/0960--8524(96)00031--4.
Felipe, M. G. A., Vitolo, M., Mancilha, I. M., & Silva, S. S. (1997). Journal of Industrial Microbiology & Biotechnology, 18, 251–254. doi:10.1038/sj.jim.2900374.
Carvalho, W., Silva, S. S., Converti, A., & Vitolo, M. (2002). Biotechnology and Bioengineering, 79, 165–169. doi:10.1002/bit.10319.
Carvalho, W., Batista, M. A., Canilha, L., Santos, J. C., Converti, A., & Silva, S. S. (2004). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 79, 1308–1312. doi:10.1002/jctb.1131.
Roberto, I. C., Silva, S. S., Felipe, M. G. A., Mancilha, I. M., & Sato, S. (1996). Applied Biochemistry and Biotechnology, 57–58, 339–347.
Martynenko, N. N., Gracheva, I. M., Sarishvili, N. G., Zubov, A. L., Registan, G. I., & Lozinsky, V. I. (2004). Applied Biochemistry and Microbiology, 40, 158–164. doi:10.1023/B:ABIM.0000018919.13036.19.
Navarro, A., Rubio, M. C., & Calmieri, D. A. S. (1983). European Journal of Applied Microbiology and Biotechnology, 17, 148–151. doi:10.1007/BF00505879.
Acknowledgments
The authors gratefully acknowledge the financial support of FAPESP and CNPq (Brazil).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
da Cunha, M.A.A., Converti, A., Santos, J.C. et al. PVA-Hydrogel Entrapped Candida Guilliermondii for Xylitol Production from Sugarcane Hemicellulose Hydrolysate. Appl Biochem Biotechnol 157, 527–537 (2009). https://doi.org/10.1007/s12010-008-8301-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-008-8301-5