Skip to main content
Log in

Fatty Acid Profiling During Microbial Lipid Production Under Varying pO2 and Impeller Tip Speeds

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fatty acid profile study was undertaken to study the effect of impeller tip speed-associated shear stress and dissolved oxygen saturation (DO) on the fatty acid composition variation and on total lipid content of the cells. The study was undertaken in a 5-l stirred tank bioreactor using Mucor sp. RRL001. To study the interaction of parameters and their effects, a central composite design was used. The fatty acid profiling during the course of study suggested that oleic acid and palmitic acid were two major components with their composition varying between 34–47% and 29–39.1%, respectively, of the total lipid content. The GLA content varied between 3% and 9% of the total lipid. The lipid profile study also revealed the presence of a minor amount of fatty acids of chain length C:12, C:20, C:22, and C:24. The modeling of lipid accumulation suggested that it follows a quadratic model with both impeller tip speed (p = 0.0166) and dissolved oxygen concentration (p = 0.0098) following the quadratic order of effect. The fermenter run based on the optimum production zone in response surface plot resulted in the maximum 4.8 g l−1 lipid compared with the model-predicted value of 4.49 g l−1. The present study suggests that dissolved oxygen saturation is a more significant contributor to total lipid accumulation. However, the study also suggests that the fatty acid profile of fungal lipid is not directly associated with the shear stress or oxygen availability in Mucor sp. RRL001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zurier, R. B., Rossetti, R. G., Jacobson, E. W., DeMarco, D. M., Liu, N. Y., Temming, J. E., et al. (1996). Gamma-linolenic acid treatment of rheumatoid arthritis: A randomized, placebo-controlled trial. Arthritis and Rheumatism, 39, 1808–1817. doi:10.1002/art.1780391106.

    Article  CAS  Google Scholar 

  2. Fan, Y. Y., & Chapkin, R. S. (1998). Recent advances in nutritional science—Importance of dietary gamma-linolenic acid in human health and nutrition. Journal of Nutrition, 128, 1411–1414.

    CAS  Google Scholar 

  3. Kenny, F., Pinder, S., Ellis, I., Gee, J., Nicholson, R., & Bryce, R. (2000). Gamma-linolenic acid with tamoxifen as primary therapy in breast cancer. International Journal of Cancer, 85, 643–648. doi:10.1002/(SICI)1097-0215(20000301)85:5<643::AID-IJC8>3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  4. Chen, H. C., & Chang, C. C. (1996). Production of gamma-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnology Progress, 12, 338–341. doi:10.1021/bp960009y.

    Article  CAS  Google Scholar 

  5. Kavadia, A., Komaitis, M., Chevalot, I., Blanchard, F., Marc, I., & Aggelis, G. (2001). Lipid and gamma-linolenic acid accumulation in strains of Zygomycetes growing on glucose. Journal of the American Oil Chemists’ Society, 78, 341–346. doi:10.1007/s11746-001-0266-3.

    Article  CAS  Google Scholar 

  6. Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters (2nd ed.). New York: Wiley-Interscience.

    Google Scholar 

  7. Bruns, R. E., Scarminio, I. S., & Neto, B. B. (2006). Statistical design—Chemometrics. Amsterdam: Elsevier.

    Google Scholar 

  8. Chen, H. C., & Liu, T. M. (1997). Inoculum effects on the production of gamma-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzyme and Microbial Technology, 21, 137–142. doi:10.1016/S0141-0229(96)00262-1.

    Article  CAS  Google Scholar 

  9. Dyal, S. D., Bouzidi, L., & Narine, S. S. (2005). Maximizing the production of gamma-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Research International, 38, 815–829. doi:10.1016/j.foodres.2005.04.002.

    Article  CAS  Google Scholar 

  10. Hiruta, O., Futamura, T., Takebe, H., Satoh, A., Kamisaka, Y., Yokochi, T., et al. (1996). Optimization and scale-up of gamma-linolenic acid production by Mortierella ramanniana MM 15-1, a high gamma-linolenic acid producing mutant. Journal of Fermentation and Bioengineering, 82, 366–370. doi:10.1016/0922-338X(96)89152-5.

    Article  CAS  Google Scholar 

  11. Ahmed, S. U., Singh, S. K., Pandey, A., Kanjilal, S., & Prasad, R. B. N. (2006). Effects of various process parameters on the production of gamma-linolenic acid in submerged fermentation. Food Technology and Biotechnology, 44, 283–287.

    CAS  Google Scholar 

  12. Folch, J., Less, M., & Stanley, S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  13. Morrison, W. R., & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride—Methanol. Journal of Lipid Research, 53, 600–608.

    Google Scholar 

  14. Fakas, S., Galiotou-Panayotou, M., Papanikolaou, S., Komaitis, M., & Aggelis, G. (2007). Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme and Microbial Technology, 40, 1321–1327. doi:10.1016/j.enzmictec.2006.10.005.

    Article  CAS  Google Scholar 

  15. Jeennor, S., Laoteng, K., Tanticharoen, M., & Cheevadhanarak, S. (2006). Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiology Letters, 259, 60–66. doi:10.1111/j.1574-6968.2006.00242.x.

    Article  CAS  Google Scholar 

  16. Papanikolaou, S., Chevalot, I., Komaitis, M., Marc, I., & Aggelis, G. (2002). Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology, 58, 308–312. doi:10.1007/s00253-001-0897-0.

    Article  CAS  Google Scholar 

  17. Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2003). Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Current Microbiology, 46, 124–130. doi:10.1007/s00284-002-3833-3.

    Article  CAS  Google Scholar 

  18. Bati, N., Hammond, E. G., & Glatz, B. A. (1984). Biomodification of fats and oils: trials with Candida lipolytica. Journal of the American Oil Chemists’ Society, 61, 1743–1746. doi:10.1007/BF02582139.

    Article  CAS  Google Scholar 

  19. Choi, S. Y., Ryu, D. D. Y., & Rhee, J. S. (1982). Production of microbial lipid: Effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnology and Bioengineering, 24, 1165–1172. doi:10.1002/bit.260240513.

    Article  CAS  Google Scholar 

  20. Bernardo, O., Santisteban, Y. S., & Filho, F. M. (2005). Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme and Microbial Technology, 36, 717–724. doi:10.1016/j.enzmictec.2004.12.008.

    Article  Google Scholar 

  21. Amano, N., Shinmen, Y., Akimoto, K., Kawashima, H., & Amachi, T. (1992). Chemotaxonomic significance of fatty acid composition in the genus Mortierella (Zygomycetes, Mortierellaceae). Mycotaxon, 44, 257–265.

    Google Scholar 

  22. Certik, M., Balteszova, L., & Sajbidor, J. (1997). Lipid formation and gamma-linolenic acid production by Mucorales fungi grown on sunflower oil. Letters in Applied Microbiology, 25, 101–105. doi:10.1046/j.1472-765X.1997.00173.x.

    Article  CAS  Google Scholar 

  23. Certik, M., Slavikova, L., Marsnova, S., & Sajbidor, J. (2006). Enhancement of nutritional value of cereals with gamma-linolenic acid by fungal solid-state fermentations. Food Technology and Biotechnology, 44, 75–82.

    CAS  Google Scholar 

  24. Eroshin, V. K., Dedyukhina, E. G., Chistyakova, T. I., Zhelifonova, V. P., Kurtzman, C. P., & Bothast, R. J. (1996). Arachidonic-acid production by species of Mortierella. World Journal of Microbiology & Biotechnology, 12, 91–96. doi:10.1007/BF00327809.

    Article  CAS  Google Scholar 

  25. Jansa, J., Gryndler, M., & Matucha, M. (1999). Comparison of the lipid profiles of arbuscular mycorrhizal (AM) fungi and soil saprophytic fungi. Symbiosis, 26, 247–264.

    CAS  Google Scholar 

  26. Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry, 40, 3627–3652. doi:10.1016/j.procbio.2005.02.020.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Syed Ubaid Ahmed, thanks CSIR, New Delhi, India for the SRF fellowship. The proposed work was financially supported by a CSIR Task Force CMM006 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S.U., Singh, S.K., Pandey, A. et al. Fatty Acid Profiling During Microbial Lipid Production Under Varying pO2 and Impeller Tip Speeds. Appl Biochem Biotechnol 151, 599–609 (2008). https://doi.org/10.1007/s12010-008-8261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8261-9

Keywords

Navigation