Skip to main content
Log in

Bioleaching of Zinc and Iron from Steel Plant Waste using Acidithiobacillus Ferrooxidans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bacterial leaching of zinc and iron from solid wastes at the Isdemir iron and steel plant has been investigated using Acidithiobacillus ferrooxidans as the bacterial agent. The effects of a range of operational parameters, including particle size, solids concentration and pH, on the efficiency of the bioleaching process were investigated. In each test, several variables were determined to assess the efficiency of leaching, including slurry pH and redox potential, temperature, bacteria population and concentrations of zinc and iron in solution. Experimental results demonstrated that pulp solids concentration, slurry pH and solids particle size were all important parameters in the bacterial leaching process. Maximum extraction was achieved at pH values around 1.3 and a solids concentration of 1% w/v, with 35% of the Zn content and 37% of the Fe being dissolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szekely, J. (1996). Steelmaking and industrial ecology is steel a green material? ISIJ International, 36, 121–135.

    Article  CAS  Google Scholar 

  2. Leclerc, N., Meux, E., & Lecuire, J. M. (2003). Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 70, 175–183.

    Article  CAS  Google Scholar 

  3. Thakur, P. K. (2000). Utilization of steel melting slag to generate wealth from waste. Proceedings of conference on environmental management in metallurgical industries, BHU, Varanasi, India (pp. 187–193).

  4. Yadav, U. S., Das, B. K., & Kumar, A. (2001). Recovery of mineral values from integrated steel plant waste. Proceedings of 6th southern hemisphere meeting on mineral technology, Brazil (pp. 719–725).

  5. Zhao, Y., & Stanforth, R. (2000). Extraction of zinc from zinc ferrites by fusion with caustic soda. Minerals Engineering, 13, 1417–1421.

    Article  CAS  Google Scholar 

  6. Olper, M. (1985). Recycling of metals and engineered materials. Minerals Metals and Materials Society, (pp. 563–578).

  7. Lundgren, D. G., Vakova-Valchanova, M., & Reed, R. (1986). Chemical reactions important in bioleaching and bioaccumulation. Biotechnology and Bioengineering Symposium, 16, 7–21.

    CAS  Google Scholar 

  8. Zunkel, A. D. (1997). Electric arc furnace dust management: A review of technologies. Iron and Steel Engineer, 74(3), 33–38.

    Google Scholar 

  9. Haddadin, J., Dagot, C., & Fick, M. (1995). Models of bacterial leaching. Enzyme and Microbial Technology, 17, 290–305.

    Article  CAS  Google Scholar 

  10. Sampson, M. I., Phillips, C. V., & Blake, R. C. (2000). Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulphides. Minerals Engineering, 13, 373–389.

    Article  CAS  Google Scholar 

  11. Sand, W., Gehrke, T., Jozsa, D. G., & Schippers, A. (2001). Biochemistry of bacterial leaching direct versus indirect bioleaching. Hydrometallurgy, 59, 159–175.

    Article  CAS  Google Scholar 

  12. Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B. Progress in bioleaching applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249–257.

    Article  CAS  Google Scholar 

  13. Rodriguez, Y., Ballester, A., Blazquez, M. L., Gonzalez, F., & Munoz, J. A. (2003). New information on the sphalerite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71, 57–66.

    Article  CAS  Google Scholar 

  14. Gupta, A., Birendra, K., & Mishra, R. (2003). Study on the recovery of zinc from Moore cake: A biotechnological approach. Minerals Engineering, 16, 41–43.

    Article  CAS  Google Scholar 

  15. Mulligan, C. N., Kamali, M., & Gibbs, B. F. (2004). Bioleaching of heavy metals from a low grade ore using Aspergillus niger. Journal of Hazardous Materials, 110, 77–84.

    Article  CAS  Google Scholar 

  16. Liao, M. X., & Deng, T. L. (2004). Zinc and lead extraction from complex raw sulphides by sequential bioleaching and acidic brine leach. Minerals Engineering, 17, 17–22.

    Article  CAS  Google Scholar 

  17. Pina, P. S., Leao, V. A., Silva, C. A., Daman, D., & Frenay, Y. J. (2005). The effect of ferrous and ferric iron and sphalerite bioleaching with Acidithiobacillus sp. Minerals Engineering, 18, 549–551.

    Article  CAS  Google Scholar 

  18. Keeling, S. E., Palmer, M. L., Caracatsanis, F. C., Johnson, J. A., & Watling, H. R. (2005). Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Minerals Engineering, 18, 1289–1296.

    Article  CAS  Google Scholar 

  19. Shi, S., Fang, Z., & Ni, J. (2006). Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438–446.

    Article  CAS  Google Scholar 

  20. Mack, C., Wilhelmi, B., Duncan, J. R., & Burgess, J. E. (2007). Biosorption of precious metals. Biotechnology Advances, 25, 264–271.

    Article  CAS  Google Scholar 

  21. de Souza, A. D., Pina, P. S., & Leão, V. A. (2007). Bioleaching and chemical leaching as an integrated process in the zinc industry. Minerals Engineering, 20, 591–599.

    Article  Google Scholar 

  22. Veglio, F., Beolchini, F., Nardini, A., & Toro, L. (2000). Bioleaching of a pyrrhotite ore by sulfo-oxidans strain. Chemical Engineering Science, 55, 783–795.

    Article  CAS  Google Scholar 

  23. Wong, J. K., & Henry, J. G. (1988). Bacterial leaching of heavy metals from anaerobically digested sludge. In D. L. Wise (Ed.), Biotreatment systems (pp. 125–169). Boca Raton, FL: CRC.

    Google Scholar 

  24. Jensen, A. B., & Webb, C. (1995). Ferrous sulphate oxidation using Thiobacillus ferrooxidans: A review. Process Biochemistry, 30, 225–236.

    Article  CAS  Google Scholar 

  25. Silverman, P., & Lundgren, D. G. (1969). Studies on chemoautotrophic bacterium ferrobacillus ferroxidans. Journal of Bacteria, 77, 642–647.

    Google Scholar 

  26. Ronald, M. A. (1997). Handbook of microbiological media, (2nd ed.). New York: CPC Press Co.

  27. Blancarte-Zurita, M. A., Branion, R. M. R., & Lawrence, R. W. (1987). Application of a shrinking particle model to the kinetics of microbiological leaching. In R. W. Lawrence, R. M. R. Branion, & H. G. Ebner (Eds.), Fundamental and applied biohydrometallurgy (pp. 243–253). Amsterdam: Elsevier.

    Google Scholar 

  28. Froment, G. F., & Bischoff, K. B. (1979). Chemical reactor analysis and design. New York: Wiley.

    Google Scholar 

  29. Woznick, D. J., & Huang, J. Y. C. (1991). Variables affecting metal removal from sludge. Journal of Water Pollution Control, 54, 1574–1580.

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided under project MMF2004-BAP7. The authors also wish to thank Isdemir AS for providing test samples and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Bayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayat, O., Sever, E., Bayat, B. et al. Bioleaching of Zinc and Iron from Steel Plant Waste using Acidithiobacillus Ferrooxidans . Appl Biochem Biotechnol 152, 117–126 (2009). https://doi.org/10.1007/s12010-008-8257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8257-5

Keywords

Navigation