Skip to main content
Log in

Different Strategies of Covalent Attachment of Oligonucleotide Probe onto Glass Beads and the Hybridization Properties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The glass bead is a new biochip support material for immobilization biomolecules, due to its independence and convenient rearrangement. In order to optimize the immobilization efficiency of oligonucleotides onto glass beads and obtain the highest hybridization efficiency, three commonly used coupling strategies have been studied for covalently attaching oligonucleotides onto large glass beads. Glass beads with 250 μm diameter were amino-silaned with 2% 3-aminopropyltrimethoxysilane (APTMS) and then reacted separately with glutaraldehyde, succinic anhydride and 1,4-phenylene diisothiocyanate (PDITC) to derive CHO beads, COOH beads and isothiocyanate-modified beads (NCS-Beads) accordingly. Afterwards, amino-terminal oligonucleotides were covalently attached onto the surface of beads achieved by three strategies mentioned above. The immobilization efficiency were studied to compare the three strategies, which turned out 2.55 × 1013 probes/cm2 for CHO-Beads, 3.21 × 1013 probes/cm2 for COOH beads and 6.68 × 1013 probes/cm2 for NCS beads. It meant that the immobilization efficiency based on NCS beads was most acceptable. And the method, developed by attaching amino-terminal oligonucleotides onto these cyanate active beads, could be regarded as an efficient one for immobilizing oligonucleotides onto a solid surface. Moreover, in this paper, the hybridization properties of NCS bead-based oligonucleotides have been studied by employing Cy5-tagged complementary oligonucleotides. It was found that the high probe density NCS beads led to low hybridization efficiency possibly due to the existence of steric crowding. In addition, the equilibrium binding constant K A was determined by employing Langmuir isotherm model, which was 7.0 × 106 M−1 for NCS beads with the density of 6.7 × 1013 probes/cm2. Furthermore, it only took 60 min to reach hybridization equilibrium. These large microspheres (>100 μm) can be employed in the mesofluidic systems for automated heterogeneous assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lytton-Jean, A. K. R., Han, M. S., & Mirkin, C. A. (2007). Analytical Chemistry, 79, 6037–6041.

    Article  CAS  Google Scholar 

  2. Robelek, R., Niu, L., Schmid, E. L., & Knoll, W. (2004). Analytical Chemistry, 76, 6160–6165.

    Article  CAS  Google Scholar 

  3. Sakata, T., Maruyama, S., Ueda, A., Otsuka, H., & Miyahara, Y. (2007). Langmuir, 23, 2269–2272.

    Article  CAS  Google Scholar 

  4. Wu, L., Thompson, D. K., Liu, X., Fields, M. W., Bagwell, C. E., Tiedje, J. M., et al. (2004). Environmental Science & Technology, 38, 6775–6782.

    Article  CAS  Google Scholar 

  5. Kohara, Y., Noda, H., Okano, K., & Kambara, H. (2002). Nucleic Acids Research, 30, e87.

    Article  Google Scholar 

  6. Lenigk, R., Carles, M., Ip, N. Y., & Sucher, N. J. (2001). Langmuir, 17, 2497–2501.

    Article  CAS  Google Scholar 

  7. Edman, C. F., Raymond, D. E., Wu, D. J., Tu, E., Sosnowski, R. G., Butler, W. F., et al. (1997). Nucleic Acids Research, 25, 4907–4914.

    Article  CAS  Google Scholar 

  8. Chrisey, L. A., Lee, G. U., & O’Ferrall, C. E. (1996). Nucleic Acids Research, 24, 3031–3039.

    Article  CAS  Google Scholar 

  9. Joos, B., Kuster, H., & Cone, R. (1997). Analytical Biochemistry, 247, 96–101.

    Article  CAS  Google Scholar 

  10. Rasmussen, S. R., Larsen, M. R., & Rasmussen, S. (1991). Analytical Biochemistry, 198, 138–142.

    Article  CAS  Google Scholar 

  11. Ghosh, S. S., & Musso, G. F. (1987). Nucleic Acids Research, 15, 5353–5372.

    Article  CAS  Google Scholar 

  12. Guo, Z., Guilfoyle, R. A., Thiel, A. J., Wang, R., & Smith, L. M. (1994). Nucleic Acids Research, 22, 5456–5465.

    Article  CAS  Google Scholar 

  13. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P., & Davis, R. (1996). Proceedings of the National Academy of Sciences, 93, 10614–10619.

    Article  CAS  Google Scholar 

  14. Lamture, J. B., Beattie, K. L., Burke, B. E., Eggero, H. D., Ehrlich, D. J., Fowler, R., et al. (1994). Nucleic Acids Research, 22, 2121–2125.

    Article  CAS  Google Scholar 

  15. Charles, P. T., Vora, G. J., Andreadis, J. D., Fortney, A. J., Meador, C. E., Dulcey, C. S., et al. (2003). Langmuir, 19, 1586–1591.

    Article  CAS  Google Scholar 

  16. Chrisey, L. A., Lee, G. U., & Ferrall, E. O. (1996). Nucleic Acids Research, 24, 3031–3039.

    Article  CAS  Google Scholar 

  17. Rogers, Y. H., Jiang-Baucom, P., Huang, Z. J., Bogdanov, V., Anderson, S., & Boyce-Jacino, M. T. (1999). Analytical Biochemistry, 266, 23–30.

    Article  CAS  Google Scholar 

  18. Smith, S. B., Finzi, L., & Bustamante, C. (1992). Science, 258, 1122–1126.

    Article  CAS  Google Scholar 

  19. Arlinghaus, H. F., Kwoka, M. N., Guo, X.-Q., & Jacobson, K. B. (1997). Analytical Chemistry, 69, 1510–1517.

    Article  CAS  Google Scholar 

  20. Seong, G. H., Zhan, W., & Crooks, R. M. (2002). Analytical Chemistry, 74, 3372–3377.

    Article  CAS  Google Scholar 

  21. Liu, X. D., Tokura, S., Haruki, M., Nishi, N., & Sakairi, N. (2002). Carbohydrate Polymers, 49, 103–108.

    Article  CAS  Google Scholar 

  22. Wu, S. W., Liu, B., & Li, S. (2005). International Journal of Biological Macromolecules, 37, 263–267.

    Article  CAS  Google Scholar 

  23. Monaghan, P. B., McCarney, K. M., Ricketts, A., Littleford, R. E., Docherty, F., Smith, W. E., et al. (2007). Analytical Chemistry, 79, 2844–2849.

    Article  CAS  Google Scholar 

  24. Janolino, V. G., & Swaisgood, H. E. (1982). Biotechnology and Bioengineering, 24, 1069–1080.

    Article  CAS  Google Scholar 

  25. Fixe, F., Dufva, M., Telleman, P., & Christensen, C. B. V. (2004). Nucleic Acids Research, 32, e9.

    Article  CAS  Google Scholar 

  26. Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., & Corn, R. M. (2001). Analytical Chemistry, 73, 1–7.

    Article  CAS  Google Scholar 

  27. Okahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., & Ebara, Y. (1998). Analytical Chemistry, 70, 1288–1296.

    Article  CAS  Google Scholar 

  28. Nolan, J. P., & Sklar, L. A. (2002). Trends in Biotechnology, 20, 9–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded in part by SHUGUANG Program of Shanghai (06SG32), the Program for New Century Excellent Talents in University (Grant NCET-07–0287), and the National Natural Science Foundation of China (20627005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Ce Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, H., Ye, BC. Different Strategies of Covalent Attachment of Oligonucleotide Probe onto Glass Beads and the Hybridization Properties. Appl Biochem Biotechnol 152, 54–65 (2009). https://doi.org/10.1007/s12010-008-8245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8245-9

Keywords

Navigation