Skip to main content
Log in

Effects of Organic Solvents on Immobilized Lipase in Pectin Microspheres

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipase from Brevibacillus agri 52 was found stable up to 90% diethylenglycol (DEG), glycerol (GLY), and 1,2 propanediol (1,2 PRO) at 37 °C for 1 h and the stability was reduced only approximately 20% after 12 h incubation, but in 40% dimethylsulfoxide (DMSO), lipase activity was stable only for 1 h. Inhibition of the biocatalysts with dimethylformamide (DMF) was detected at 20% solvent concentration. In water immiscible systems, the stability of lipase in n-hexane, n-tetradecane and n-heptane resembles the water activity, but in the presence of isobutanol, 1-hexanol, and butylbutirate, the stability was significantly reduced. Lipase 52 precipitates in the presence of 50% acetone or ethanol/water mixtures, but enzymatic activity was partially recovered by adding 20% GLY, DEG, 1,2 PRO, or DMSO to the reaction mixture. Furthermore, by increasing DEG in 70% DMF/DEG mixtures, the lipase activity was protected. Encapsulation of lipase in pectin gels cross-linked with calcium ions brings three to four times more enzymatic activity in 70% water miscible organic solvents compared to aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vulfson, E. N., Halling, P. J., & Holland, H. L. (2001). Enzymes in non-aqueous solvents. Totowa, NJ: Humana.

    Book  Google Scholar 

  2. Jaeger, K. E., & Reetz, M. T. (1998). Tibtech, 16, 396–403.

    CAS  Google Scholar 

  3. Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). Biotechnology and Applied Biochemistry, 29, 119–131.

    CAS  Google Scholar 

  4. Haba, E., Breco, O., Ferrer, C., Marqués, A., Busquets, M., & Manresa, A. (2000). Biotechnology and Applied Biochemistry, 26, 40–44.

    CAS  Google Scholar 

  5. Torres, S., & Castro, G. R. (2004). Food Technology and Biotechnology, 42, 271–277.

    CAS  Google Scholar 

  6. Hotta, Y., Ezaki, S., Atomi, H., & Imanaka, T. (2002). Applied and Environmental Microbiologys, 68, 3925–393.

    Article  CAS  Google Scholar 

  7. Carrea, G., & Riva, S. (2000). Angewandte Chemie. International Edition in English, 39, 2226–2254.

    Article  CAS  Google Scholar 

  8. Reetz, M. T. (1997). Advanced Materials, 9, 943–954.

    Article  CAS  Google Scholar 

  9. Van Buren, J. P. (1991). Function of pectin in plant tissue structure and firmness. In H. W. Reginald (Ed.), The chemistry and technology of pectin (pp. 3–4). New York: Academic.

    Google Scholar 

  10. Ryden, P., & Selvendram, R. R. (1990). Carbohydrate Research, 195, 257–272.

    Article  CAS  Google Scholar 

  11. Lootens, D., Capel, F., Durand, D., Nicolai, T., Boulenguer, P., & Langendorff, V. (2003). Food Hydrocolloid, 17, 237–244.

    Article  CAS  Google Scholar 

  12. Gupta, N., Rathi, P., & Gupta, R. (2002). Analytical Biochemistry, 311, 98–99.

    Article  CAS  Google Scholar 

  13. Bradford, M. M. (1976). Analytical Biochemistry, 78, 248–254.

    Article  Google Scholar 

  14. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  15. Hudson, E. P., Eppler, R. K., & Clark, D. S. (2005). Current Opinion in Biotechnology, 16, 637–643.

    Article  CAS  Google Scholar 

  16. Ferst, A. (1999). Structure and mechanism in protein science. New York: Freeman.

    Google Scholar 

  17. Castro, G. R., & Knubovets, T. (2003). Critical Reviews in Biotechnology, 23, 195–231.

    Article  CAS  Google Scholar 

  18. Lima, V. M. G., Krieger, N., Mitchell, D. A., Baratti, J. C., De Felippis, I., & Fontana, J. D. (2004). Journal of Molecular Catalysis. B, Enzymatic, 31, 53–61.

    Article  CAS  Google Scholar 

  19. Zhao, L. -L., Xu, J. -H., Zhao, J., Pan, J., & Wang, Z. -L. (2008). Process Biochemistry, 43, 626–633.

    Article  CAS  Google Scholar 

  20. Leščic, I., Vukelic, B., Majeric-Elenkov, M., Saenger, W., & Abramic, M. (2001). Enzyme and Microbial Technology, 29, 548–553.

    Article  Google Scholar 

  21. Pahujani, S., Kanwar, S. S., Chauhan, G., & Gupta, R. (2008). Bioresource Technology, 99, 2566–2570.

    Article  CAS  Google Scholar 

  22. Tsuzuki, W., Ue, A., & Nagao, A. (2003). Bioscience, Biotechnology, and Biochemistry, 67, 1660–1666.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M.D. Baigorí for helpful discussions and providing for the strain. The authors gratefully acknowledge the financial support from Pew Charitable Trust (USA), CONICET (PIP 6203/06, Argentina) and ANPCyT (BID no. 1728/ OC-AR, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costas, L., Bosio, V.E., Pandey, A. et al. Effects of Organic Solvents on Immobilized Lipase in Pectin Microspheres. Appl Biochem Biotechnol 151, 578–586 (2008). https://doi.org/10.1007/s12010-008-8233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8233-0

Keywords

Navigation