Skip to main content
Log in

Biological Treatment of Toxic Petroleum Spent Caustic in Fluidized Bed Bioreactor Using Immobilized Cells of Thiobacillus RAI01

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90–98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 ± 5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Bank Group (1998). Petrochemicals manufacturing pollution prevention and abatement handbook. Washington: The International Bank for Reconstruction and Development.

    Google Scholar 

  2. Roger, C. H. (1994). Industry, technology, and the environment: competitive challenges and business opportunities. Washington, D.C.: US Congress.

    Google Scholar 

  3. Tania Mara, S. C., & Clayton, B. M. (2000). Wet air oxidation of refinery spent caustic: A refinery case Study. In: NPRA Conference, San Antonio, Texas, USA.

  4. Claude, E. E. Robert, J. L., & Bruce, L. B. (1994). Wet air oxidation of ethylene plant spent caustic. In: American Institute of Chemical Engineers Sixth Annual Ethylene Producers Conference Annual Meeting Atlanta, Georgia USA.

  5. WHO (1981). H 2 S, Environmental health criteria, 19. Geneva: WHO.

    Google Scholar 

  6. Buchanan, R. E., & Gibbons, N. E. (1974). The Thiobacilli, Bergey’s manual of determinative bacteriology (pp. 78–89, 8th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  7. Vishniac, W., & Santer, M. (1957). The Thiobacilli. Bacteriological Reviews, 21, 185–213.

    Google Scholar 

  8. Kuenen, J. G., & Roberson, L. A. (1992). Biodegradation, 3, 239–254.

    Article  CAS  Google Scholar 

  9. Manahan, S. E. (2000). Aquatic microbial biochemistry: Environmental chemistry. Boca Raton: CRC Press.

    Google Scholar 

  10. Ravichandra, P., Gopal, M., Gangagni, R. A., Ramakrishna, M., & Annapurna, J. (2007). Journal of Environmental Biology, 28(4), 819–823.

    CAS  Google Scholar 

  11. Akhnazarova, S., & Kafarov, V. (1982). Experiment optimization in chemistry and chemical engineering. Moscow: Mir Publications.

    Google Scholar 

  12. Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: Process and product optimization using designed experiments (1st ed.). New York: Wiley-Interscience.

    Google Scholar 

  13. Khuri, A. I., & Cornell, J. A. (1987). Response surfaces: Design and analysis. New York: Marcel Dekker.

    Google Scholar 

  14. Ravichandra, P., Subhakar, Ch., Pavani, A., & Annapurna, J. (2008). Bioresource Technology, 99, 1776–1786.

    Article  CAS  Google Scholar 

  15. Himabindu, M., Ravichandra, P., Vishalakshi, K., & Annapurna, J. (2006). Applied Biochemistry and Biotechnology, 134, 143–154.

    Article  CAS  Google Scholar 

  16. Radhika, T., Kiran, K. D., Ravichandra, P., & Lakshmi, N. M. (2007). Applied Biochemistry and Biotechnology, 141, 187–201.

    Article  Google Scholar 

  17. Clescerl, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  18. Janssen, J. H., Ma, S. C., Lens, P., & Lettinga, G. (1997). Biotechnology and Bioengineering, 53, 32–40.

    Article  CAS  Google Scholar 

  19. Kethum, P. A. (1995). Microbiology: Concepts and applications. Oakland: Wiley.

    Google Scholar 

  20. Cees, J. N., Buisman, B., Geraali, G., Peter, I., & Lettinga, G. (1990). Biotechnology and Bioengineering, 35, 50–56.

    Article  Google Scholar 

  21. Cees, J. N., Buisman, B., Peter, I., Anne, H., Janssen, A. J. H., Robert, T. H., et al. (1991). Biotechnology and Bioengineering, 38, 813–826.

    Article  Google Scholar 

  22. Suzuki, I. (1999). Canadian Journal of Microbiology, 45, 97–105.

    Article  CAS  Google Scholar 

  23. Paul, F. H., & Wei, Z. (2001). Water Research, 35(15), 3605–3610.

    Article  Google Scholar 

  24. Jan, S., Svitelskaya, A., Mark, B. V., Look, W., Hulshoff, P., Lettinga, G., et al. (2004). Water Research, 38, 4331–4340.

    Article  CAS  Google Scholar 

  25. Sublette, K. L. (1997). Applied Biochemistry and Biotechnology, 65(1–3), 695–706.

    Article  Google Scholar 

  26. Julie, A. C., Robert, R. B., Kathleen, D., Ravi, K., & Sublette, K. L. (2000). Applied Biochemistry and Biotechnology, 84–86, 707–720.

    Google Scholar 

  27. Ravichandra, P., Gopal, M., Gangagni, R. A., Ramakrishna, M., & Annapurna, J. (2007). Journal of Applied Sciences, 7, 2188–2193.

    CAS  Google Scholar 

  28. Ravichandra, P., Ramakrishna, M., Rao, A. G., & Annapurna, J. (2006). Journal of Engineering Science and Technology, 1, 21–30.

    Google Scholar 

  29. Krishnakumar, B., Majumdar, S., Manilal, V. B., & Ajit, H. (2005). Water Research, 39, 639–647.

    Article  CAS  Google Scholar 

  30. Vetter, R. D. (1985). Marine Biology, 88, 33–42.

    Article  CAS  Google Scholar 

  31. Steudel, R. (1989). In H. G. Schlegel, & B. Bowien (Eds.), Autotrophic bacteria (pp. 289–303). Madison: Science Technology Publishers.

    Google Scholar 

  32. Pickering, I. J., George, G. N., Yu, E. Y., Brune, D. C., Tuschak, C., Overmann, J., et al. (2001). Biochemistry, 40(8), 138–145.

    Google Scholar 

  33. Prange, A., Chauvistre, R., Modrow, H., Hormes, J., Truper, H. G., & Dahl, C. (2002). Microbiology, 148, 267–276.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. J.S. Yadav, Director, IICT, for his encouragement. One of the authors, P. Ravichandra, acknowledges CSIR, New Delhi, for senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annapurna Jetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potumarthi, R., Mugeraya, G. & Jetty, A. Biological Treatment of Toxic Petroleum Spent Caustic in Fluidized Bed Bioreactor Using Immobilized Cells of Thiobacillus RAI01. Appl Biochem Biotechnol 151, 532–546 (2008). https://doi.org/10.1007/s12010-008-8229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8229-9

Keywords

Navigation