Skip to main content
Log in

Organic Phase Synthesis of Ethyl Oleate Using Lipases Produced by Solid-state Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper reports a study of the enzymatic esterification of oleic acid and ethanol. The reaction was catalyzed by lipases produced by solid-state fermentation with Rhizopus sp. Olive oil and perlite were used as an inducer and inert support, respectively. Synthesis of ethyl oleate was carried out in a 10-mL batch reactor with magnetic stirring. The effects of substrate ratios, biocatalyst concentration, and temperature on the reaction rate and conversion efficiency were evaluated. The highest reaction rate (1.64 mmol/L min) was reached with an oleic acid/ethanol mol ratio of 1:5 (oleic acid 50 mM:ethanol 250 mM) and 1 g of biocatalyst. Conversions approaching 100% were obtained after 60 min of reaction at 45 °C with n-hexane as a solvent. The initial reaction rate increased proportionally with respect to biocatalyst concentration, which suggests that the reaction rate was not controlled by mass transfer. The biocatalyst retained more than 80% of its catalytic activity after 7 months of storage at 4 °C. The results demonstrate that the biocatalyst produced by Rhizopus sp. in solid-state fermentation can be successfully used for ethyl oleate synthesis over short reaction periods under conditions when ethanol is in excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Foresti, M., Errazu, A., & Ferreira, M. (2005). Biochemical Engineering Journal, 25, 69–77.

    Article  CAS  Google Scholar 

  2. Bauer, A., Garbe, D., & Surgurg, H. (1990). Common fragrance and flavor materials (2nd ed.). New York: VCH.

    Google Scholar 

  3. Gandhi, N., Sawat, S., & Joshi, J. (1995). Biotechnology Progress, 11, 282–287.

    Article  CAS  Google Scholar 

  4. Hazarika, S., Goswami, N., Dutta, N., & Hazarika, A. (2002). Chemical Engineering Journal, 85, 61–68.

    Article  CAS  Google Scholar 

  5. Radzi, S., Basri, M., Salleh, A., Ariff, A., Mohammad, R., Rahman, A., et al. (2006). Journal of Chemical Technology and Biotechnology, 81, 374–380.

    Article  CAS  Google Scholar 

  6. Trani, M., Ergan, F., & Andre, G. (1991). Journal of the American Oil Chemists’ Society, 68, 20–22.

    Article  CAS  Google Scholar 

  7. Trubiano, G., Borio, D., & Errazu, A. (2007). Enzyme and Microbial Technology, 40, 716–722.

    Article  CAS  Google Scholar 

  8. Beys, S., Mitidieri, S., Schrank, A., & Vainstein, H. (2005). Process Biochemistry, 40, 321–326.

    Article  CAS  Google Scholar 

  9. Chowdary, G., Ramesh, M., & Prapulla, S. (2000). Process Biochemistry, 36, 331–339.

    Article  CAS  Google Scholar 

  10. Zaidi, A., Gainer, J., Carta, G., Mrani, A., Kadiri, T., Belarbi, Y., et al. (2002). Journal of Biotechnology, 93, 209–216.

    Article  CAS  Google Scholar 

  11. Rohit, S., Yusuf, C., & Uttam, C. (2001). Biotechnology Advances, 19, 627–662.

    Article  Google Scholar 

  12. Hölker, U., Höfer, M., & Lenz, J. (2004). Applied Microbiology and Biotechnology, 64, 175–186.

    Article  CAS  Google Scholar 

  13. Mateos, J., Ruiz, K., Rodriguez, J., Cordova, J., & Baratti, J. (2007). Journal of molecular Catalysis. B, Enzymatic, 49, 104–112.

    CAS  Google Scholar 

  14. Rodriguez, J., Mateos, J., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., et al. (2006). Process Biochemistry, 41, 2264–2269.

    Article  CAS  Google Scholar 

  15. Romero, M., Calvo, L., Alba, C., Daneshfar, A., & Ghaziaskar, H. (2005). Enzyme and Microbial Technology, 37, 42–48.

    Article  CAS  Google Scholar 

  16. Saucedo-Castañeda, G., Trejo-Hernández, M., Lonsane, B., Navarro, J., Roussos, S., Dufour, D., et al. (1994). Process Biochemistry, 29, 13–24.

    Article  Google Scholar 

  17. Fernandes, M., Maria, L., Bolzani, S., Meira, A., Joel, P., Ramos, L., et al. (2006). Journal of Molecular Catalysis. B, Enzymatic, 263, 8–13.

    Google Scholar 

  18. Pogori, N., Xu, Y., & Cheikhyoussef, A. (2007). Research Journal of Microbiology, 2, 101–116.

    Article  CAS  Google Scholar 

  19. Rupley, J., Gratton, E., & Careri, G. (1983). Trends in Biochemical Sciences, 8, 18–22.

    Article  CAS  Google Scholar 

  20. Affleck, R., Xu, Z., Suzawa, V., Focht, K., Clark, D., & Dordick, J. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 1100–1104.

    Article  CAS  Google Scholar 

  21. Broos, J., Visser, A., Engbersen, J., Verboom, W., van Hoek, A., & Reinhoudt, D. (1995). Journal of the American Chemical Society, 117, 12657–12663.

    Article  CAS  Google Scholar 

  22. Bornscheuer, U. (1999). Hydrolases in organic synthesis (1st ed.). Weinheim (Federal Republic of Germany): Wiley.

    Google Scholar 

  23. Krishna, H., Divakar, S., Prapulla, S., & Karanth, N. (2001). Journal of Biotechnology, 87, 193–201.

    Article  Google Scholar 

  24. Torres, C., & Otero, C. (1999). Enzyme and Microbial Technology, 25, 745–752.

    Article  CAS  Google Scholar 

  25. Yadav, G., & Trivedi, H. (2003). Enzyme and Microbial Technology, 32, 783–789.

    CAS  Google Scholar 

  26. Kim, J., Haam, S., Park, D., Ahn, I., Lee, T., Kim, H., et al. (2004). Chemical Engineering Journal, 99, 15–22.

    Article  CAS  Google Scholar 

  27. Serri, N., Kamaruddin, A., & Long, W. (2006). Bioprocess and Biosystems Engineering, 29, 253–260.

    Article  CAS  Google Scholar 

  28. Oliveira, A., Rosa, M., Aires-Barros, M., & Cabral, J. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 999–1005.

    Article  CAS  Google Scholar 

  29. Heidari, H., Ziaee, A., Schaller, J., & Amoozegar, M. (2007). Enzyme and Microbial Technology, 40, 266–272.

    Article  CAS  Google Scholar 

  30. Nielsen, J., Villadsen, J., & Lidén, G. (2003). Bioreaction engineering principles pp. 62–63. New York: Kluwer/Plenum.

    Google Scholar 

  31. Ghamgui, H., Miled, N., Karra-chaâbouni, M., & Gargouri, Y. (2007). Biochemical Engineering Journal, 37, 34–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mexican Council for Science and Technology (CONACyT). The authors gratefully thank Dr. Jesus A. Cordova Lopez for the Rhizopus strain used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Favela-Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Ruiz, A., García, H.S., Saucedo-Castañeda, G. et al. Organic Phase Synthesis of Ethyl Oleate Using Lipases Produced by Solid-state Fermentation. Appl Biochem Biotechnol 151, 393–401 (2008). https://doi.org/10.1007/s12010-008-8207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8207-2

Keywords

Navigation