Skip to main content

Advertisement

Log in

Selection and Optimization of Bacillus atrophaeus Inoculum Medium and its Effect on Spore Yield and Thermal Resistance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus atrophaeus’s spores are used as biological indicators to monitor sterilization processes and as a Bacillus anthracis surrogate in the development and validation of biosafety methods. The regular use of biological indicators to evaluate the efficiency of sterilization processes is a legal requirement for health services. However, its high cost hinders its widespread use. Aiming at developing a cost-effective inoculum medium, soybean molasses and nutrient-supplemented vinasse were evaluated for their effectiveness in solid-state fermentation (SSF). In biomass production, the results demonstrated that all tested compositions favor growth by providing the nutritional demands of the microorganism. Optimum casein peptone and soybean molasses concentration (1.0%, 2.5%, or 4.0%) was determined by a 2(2–0) factorial experimental design. The results have showed a positive influence of peptone on biomass production. In order to define peptone final concentration (4.0% or 6.0%), a 22 factorial experimental design was used. An optimized medium containing 4.0% soybean molasses and 4.0% casein peptone was similar in performance to a synthetic control medium (tryptone soy broth) in dry-heat thermal-resistant spore production by SSF. An experiment performed under optimum SSF conditions resulted in 1.9 × 1010 CFU g−1 dry matter with D 160 °C = 5.2 ± 0.2 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Association For The Advanced Of Medical Instrumentation/AAMI (2005) ST 40:2004

  2. Blakistone, B., Chuyate, R., Kautter, D. Jr., Charboneau, J., & Suit, K. (1999). Food Protection, 62, 262–267.

    CAS  Google Scholar 

  3. Penna, T. C., Mazzola, P. G., & Martins, A. M. (2001). BMC Infectious Diseases, 1, 16.

    Article  CAS  Google Scholar 

  4. U.S. P. XXIX (2005). Biological indicator for dry-heat sterilization, paper strip. In: The United States Pharmacopeia. 29th rev. Rockville, MD.

  5. Bayliss, C. E., & Waites, W. M. (1979). Journal of Applied Bacteriology, 47, 263–269.

    CAS  Google Scholar 

  6. Whitbourne, J. E., & Reich, R. R. (1979). Journal of the Parenteral Drug Association, 33, 132–143.

    CAS  Google Scholar 

  7. Gale, E. P., Pitchers, R., & Gray, P. (2002). Water Research, 36, 1640–1648.

    Article  CAS  Google Scholar 

  8. Weber, D. J., Sickbert-Bennett, E., Gergen, M. F., & Rutala, W. A. (2003). JAMA, 289, 1274–1277.

    Article  CAS  Google Scholar 

  9. Hodges, N. A., Melling, J., & Parker, S. J. (1980). Journal of Pharmacy and Pharmacology, 32, 126–130.

    CAS  Google Scholar 

  10. Davies, F. L., Underwood, H. M., Perkins, A. G., & Burton, H. (1977). Thermal death kinetics of Bacillus stearothermophilus spores at ultra high temperatures. 1 Laboratory determination of temperature coefficients. Journal of Food Technology, 12, 115–119.

    Google Scholar 

  11. Junge, H., Krebs, B., & Kilian, M. (2000). Pflazenschutz-Nachrichten Bayer, 1, 94–104.

    Google Scholar 

  12. Moraes, I. (2001). In: Biotecnologia Industrial. 3. LIMA et al. Ed.Blucher Ltda, São Paulo. 200–217.

  13. Monteiro, S. M., Clemente, J. J., Henriques, A. O., Gomes, R. J., Carrondo, M. J., & Cunha, A. E. (2005). Biotechnology Progress, 21, 1026–1031.

    Article  CAS  Google Scholar 

  14. Youkong, C., Dechmahitkul, W., & Mekvichitsaeng, P. (2004). Available from http://knowledge.biotec.or.th/doc_upload/2004113153453.doc. Accessed July 26, 2006.

  15. Fadel, M., & Sabour, M. (2002). Journal of Biological Sciences, 2, 16–120.

    Google Scholar 

  16. Cesare-Vidaurre, T., Campos, E., & Castro-Gomez, R. J. H. (1997). Anais do VII Mexican Congress of Biotechnology and Bioengineering, Mexico.

  17. Luna, C. L., Mariano, R. L. R., & Souto-Maior, A. M. (2002). Brazilian Journal of Chemical Engineering, 19, 133–140.

    Article  CAS  Google Scholar 

  18. Cegla et al. (2005). United States Patent 6,913,771.

  19. Siqueira, P. F. (2006). Master of Sciences Thesis, Federal University of Paraná/Universities of Provence and of the Mediterranean Sea, Curitiba, Brazil.

  20. Machado, R. (1999). Master Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

  21. Neves, L.C. M., Oliveira, K. S., Kobayashi, M. J., & Penna, T. C. V. (2006). 28th Symposium on Biotechnology for Fuels and Chemicals. Nashville, EUA.

  22. Li, X., Yang, L., Yan, P., Zuo, F., & Jin, F. (1997). Letters in Applied Microbiology, 24, 1–4.

    Article  CAS  Google Scholar 

  23. Sella, S. R. B. R., Vandenbergue, L. P. S., Medeiros, A. P., & Soccol, C. R. (2007). Anais XVI Simpósio Nacional de Bioprocessos—2007. Curitiba. Brazil. Cd. FES 520.

  24. Vries, Y. P., Atmadja, R. D., Hornstra, L. M., deVos, W. M., & Abee, T. (2005). Applied and Environmental Microbiology, 71, 3248–3254.

    Article  Google Scholar 

  25. Feavers, I. M., Foulkes, J., Setlow, B., Sun, D., Nicholson, W., Setlow, P., et al. (1990). Molecular Microbiology, 4, 275–282.

    Article  CAS  Google Scholar 

  26. Raso, J., Barbosa-Canovas, G., & Swanson, B. G. (1998). Journal of Applied Microbiology, 85, 17–24.

    Article  CAS  Google Scholar 

  27. Redmond, C., Baillie, L. W., Hibbs, S., & Moir, A. J. (2004). Microbiology, 150, 355–363.

    Article  CAS  Google Scholar 

  28. Mohan, R., Chui, E. A., Biasi, L. A., & Soccol, C. R. (2005). Brazilian Archives of Biology and Technology, 48, 37–42.

    Article  Google Scholar 

  29. Hoxey, E. V., Soper, C. J., & Davies, D. J. (1985). Journal of Applied Bacteriology, 58, 207–214.

    CAS  Google Scholar 

  30. Penna, T. C. V., Machoshvili, I. A., & Taqueda, M. E. S. (1996). PDA Journal of Pharmaceutical Science and Technology, 50, 227–237.

    CAS  Google Scholar 

  31. Olson, J. R., & Nottingham, P. M. (1980). Ecologia Microbiana de los Alimentos. Zaragosa, Acribia, p.1727.

  32. Waites, W. M., & Bayliss, C. E. (eds.) (1980). In: Microbial growth and survival in extremes of environment. Applied bacteriology technical series. 15, 159–172. London: Academic.

  33. USP 29 (2005). Biological Indicators for Sterilization. Available from www.pharmacopeia.cn/v29240/usp29nf24s0_c1035.html. Acessed July 25, 2007.

  34. Association for the Advanced of Medical Instrumentation-ANSI/AAMI/ISO 11138 (1994). Sterilization of Health Care Products—Biological Indicators.

Download references

Acknowledgments

The present research was financially supported by the Secretaria de Estado da Ciência, Tecnologia e Ensino Superior—Fundo Paraná. The authors thank José Carlos Pereira Comink for the statistic revision and Neuza Araujo and Elza Retka for the laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Regina B. R. Sella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sella, S.R.B.R., Dlugokenski, R.E.F., Guizelini, B.P. et al. Selection and Optimization of Bacillus atrophaeus Inoculum Medium and its Effect on Spore Yield and Thermal Resistance. Appl Biochem Biotechnol 151, 380–392 (2008). https://doi.org/10.1007/s12010-008-8206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8206-3

Keywords

Navigation