Skip to main content
Log in

Processing Parameters Matching Effects upon Rhizobium tropici Biopolymers’ Rheological Properties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The combined effects of the processing parameters upon rheological properties of biopolymers produced by Rhizobium tropici were studied as a function of the Ca+2 ions’ concentration variation, yeast extract concentration added to the medium, aeration, and agitation, maintaining the mannitol concentration in 10 g/L. The experiments were carried out using a fermenter with 20-L capacity as a reactor. All processing parameters were monitored online. The temperature [(30 ± 1) °C] and pH values (7.0) were kept constant throughout the experimental time. As a statistical tool, a complete 23 factorial design with central point and response surface was used to investigate the interactions between relevant variables of the fermentation process: calcium carbonate concentration, yeast extract concentration, aeration, and agitation. The processing parameter setup for reaching the maximum response for rheological propriety production was obtained when applying mannitol concentration of 10.0 g/L, calcium carbonate concentration 1.0 g/L, yeast extract concentration 1.0 g/L, aeration 1.30 vvm, and agitation 800 rpm. The viscosimetric investigation of polysaccharide solutions exposed their shear-thinning behavior and polyelectrolytic feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar, C. G., Joo, H.-S., Choi, J.-W., Koo, Y.-M., & Chang, C. S. (2004). Enzyme and Microbial Technology, 34, 673–681.

    Article  CAS  Google Scholar 

  2. Rinaudo, M. (2001). Food Hydrocolloids, 15, 433–440.

    Article  CAS  Google Scholar 

  3. Renaud, M., Belgacem, M. N., & Rinaudo, M. (2005). Polymer, 46, 12348–12358.

    Article  CAS  Google Scholar 

  4. Copetti, G., Grassi, M., Lapasin, R., & Pricl, S. (1997). Glycoconjugate Journal, 14, 951–961.

    Article  CAS  Google Scholar 

  5. Chang, M.-Y., Tsai, G.-J., & Houng, J. Y. (2005). Enzyme and Microbial Technology, 38, 407–414.

    Article  CAS  Google Scholar 

  6. Liew, S. L., Ariff, A. B., Raha, A. R., & Ho, Y. W. (2005). International Journal of Food Microbiology, 102, 137–142.

    Article  CAS  Google Scholar 

  7. Margaritis, A., & Pace, G. W. (1985). Comprehensive Biotechnology, 49(3), 1005–1004.

    Google Scholar 

  8. Sutherland, I. W. (1990). Biotechnology of microbial exopolysaccharides. New York: Cambridge University Press.

    Google Scholar 

  9. Breedveld, M. W., Zevenhuizen, L. P. T. M., Canter Cremers, H. C. J., & Zehnder, A. J. B. (1993). Antoine van Leewenhoek, 64, 1–8.

    Article  CAS  Google Scholar 

  10. Macció, D., Fabra, A., & Castro, S. (2002). Soil Biology & Biochemistry, 34, 201–208.

    Article  Google Scholar 

  11. Iagher, F., Reicher, F., & Ganter, J. L. M. S. (2002). International Journal Macromolecules, 31, 9–17.

    Article  CAS  Google Scholar 

  12. Bueno, S. M., & Garcia-Cruz, C. H. (2001). Journal Food Engineering, 50, 41–46.

    Article  Google Scholar 

  13. Gargallo, L. G., Radic, D. F., Abuin, E. S., & Lissi, E. G. (1987). in Propriedades Hidrodinâmicas - Macromoléculas en solución, chapter IV, Santiago, PNUD-UNESCO (CHI-84/006), pp. 92–106.

  14. Bobbio, P. A., & Bobbio, F. O. (1992). Química do Processamento de Alimentos à Química de Alimentos (2nd ed.). São Paulo: Livraria Varela.

    Google Scholar 

  15. Paul, F., Morin, A., & Monsan, P. (1986). Biotechnology Advenced, 4, 874–879.

    Google Scholar 

  16. Duta, F. P., França, F. P., Servulo, E. F. C., Lopes, L. M. A., Costa, A. C. A., & Barros, A. (2004). Applied Biochemistry and Biotechnology, 113–116, 639–652.

    Article  Google Scholar 

  17. Jordan, D. C. (1984). Bergey’s manual of systematic bacterilogy (vol. I). Baltimore: Williams & Wilkins.

    Google Scholar 

  18. Abdel-Fattah, Y. R. (2002). Biotechnology Letters, 38(14), 1217–1222.

    Article  Google Scholar 

  19. Abdel-Fattah, Y. R., & Olama, Z. A. (2002). Process Biochemistry, 38, 115–122.

    Article  CAS  Google Scholar 

  20. Tanyildizi, M. S., Özer, D., & Elibol, M. (2005). Process Biochemistry, 40, 2291–2296.

    Article  CAS  Google Scholar 

  21. Chaves, N. A. (2000). Doctor thesis, CCS, Universidade Federal do Rio de Janeiro.

  22. Barros Neto, B., Scarmínio, I., & Bruns, R. E. (1995). Planejamento e otimização de experimentos. Campinas: Editora Unicamp.

    Google Scholar 

  23. Calado, V., & Montgomery, D. C. (2003). Planejamento de Experimentos utilizando o Statistica. E-papers Serviços Editoriais Ltda.

  24. Montgomery, D. C. (1997). Design in analysis of experiments (4th ed.). New York: Wiley.

    Google Scholar 

  25. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York: Wiley.

    Google Scholar 

  26. Benício, B. N., Scarminio, I. S., & Bruns, R. E. (2001). Como fazer experimentos. São Paulo: Editora da Unicamp.

    Google Scholar 

  27. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and product optimization using designed experiments. New York: Wiley.

    Google Scholar 

  28. Khanna, S., & Srivastava, A. S. (2005). Process Biochemistry, 40, 2173–2182.

    Article  CAS  Google Scholar 

  29. Lakshman, K., Rastogi, N. K., & Shamala, T. R. (2004). Process Biochemistry, 39, 1977–1983.

    Article  CAS  Google Scholar 

  30. Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., Scarmino, I. S., & da Silva, R. S. F. (2005). Process Biochemistry, 40, 747–751.

    Article  CAS  Google Scholar 

  31. Abdel-Fattah, Y. R., Saeed, H. M., Gohar, Y. M., & El-Baz, M. A. (2005). Process Biochemistry, 40, 1707–1714.

    Article  CAS  Google Scholar 

  32. Duta, F. P., França, F. P., & Lopes, L. M. A. (2006). Electronic Journal of Biotechnology, 9, 391–399.

    Article  CAS  Google Scholar 

  33. Yang, B. Y., Ding, Q., & Montgomery, R. (2003). Carbohydrate Research, 338, 2673–2771.

    Google Scholar 

  34. Tavares, A. P. M. (2000). Master dissertation, Escola de Química, Universidade Federal do Rio de Janeiro.

  35. Halász, A., & Lasztity, R. (1991). Use of yeast biomass in food production. Boca Raton: CRC.

    Google Scholar 

  36. Kollar, R., Sturduk, E., & Sajbidor, J. (1992). Food Biotechnology, 6(3), 225–237.

    Article  CAS  Google Scholar 

  37. Kelly, M. (1983). In industrial enzymology: The application of enzymes in industry. New York: Nature.

    Google Scholar 

  38. Cinquini-Dantas, L. A. (1992). Doctor these, Centre de Recherches sur les Macromolécules Végétales, CNRS.

  39. Gil-Serrano, A., Gonzálea-Jiménez, I., Tejero-Mateo, P., Del Junco, A. S., Megias, M., & Romero-Vázquez, M. J. (1992). Carbohydrate Research, 225, 169–174.

    Article  CAS  Google Scholar 

  40. Canter Cremers, H. C. J., Stevens, K., Lugtenberg, B. J. J., Wiffelman, C. A., Batley, M., Redmond, J. W., et al. (1991). Carbohydrate Research, 218, 185–200.

    Article  CAS  Google Scholar 

  41. Dea, I. C. M., Mckinnon, A. A., & Rees, D. A. (1972). Journal of Molecular Biology, 68, 153–172.

    Article  CAS  Google Scholar 

  42. Lopes L. M. (1989). Master dissertation, Instituto de Macromoléculas Universidade Federal do Rio de Janeiro.

  43. Severs, E. T. (1962). Rheology of polymers, Chapter 1. New York: Reinhold.

    Google Scholar 

  44. Mitchell, J. R. (1979). Polisaccharides in food, Part 1, Chapter 4. London: Butterworths.

    Google Scholar 

  45. Holzwarth, G., & Prestridge, E. B. (1977). Science, 197, 757–759.

    Article  CAS  Google Scholar 

  46. Norton, I. T., Goodall, D. M., Frangou, S. A., Morris, E. R., & Rees, D. A. (1984). Journal of the Molecular Biology, 175, 371–394.

    Article  CAS  Google Scholar 

  47. Morris, V. J., & Belton, P. S. (1982). Progress in Food and Nutrition Science, 6, 55–66.

    CAS  Google Scholar 

  48. Launay, B., Cuvelier, G., & Martinez-Reyes, S. (1984). Gums and stabilisers for the food industry 2, Chapter, 2. Oxford: Pergamon.

    Google Scholar 

  49. Carrington, S., Odell, J., & Fisher, L. (1996). Polymer, 37(13), 2871–2875.

    Article  CAS  Google Scholar 

  50. Goycoolea, F. M., Richardson, R. K., Morris, E. R., & Gidley, M. J. (1995). Macromolecules, 28, 8308–8320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Council for Scientific and Technological Development and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Foundation (ICCTI 049/00) for financial support to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flávia Duta Pimenta or Francisca Pessôa de França.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimenta, F.D., Lopes, L.M.d.A. & de França, F.P. Processing Parameters Matching Effects upon Rhizobium tropici Biopolymers’ Rheological Properties. Appl Biochem Biotechnol 150, 33–49 (2008). https://doi.org/10.1007/s12010-008-8202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8202-7

Keywords

Navigation