Skip to main content
Log in

Improving Performance of MFC by Design Alteration and Adding Cathodic Electrolytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Performance of two microbial fuel cells (MFCs) was investigated under batch and continuous mode of operation using different cathodic electrolyte. The wastewater was supplied from the bottom port provided to the anode chamber in both the MFCs and the effluent left the anode chamber from the top port in MFC-1, whereas in MFC-2, the effluent exit was provided close to membrane. Stainless steel (SS) mesh anode was used in both the MFCs with surface area of 167 and 100 cm2 in MFC-1 and MFC-2, respectively. Under batch mode and continuous mode of operation, these MFCs gave chemical oxygen demand removal efficiency more than 85% and about 68%, respectively. Under batch mode of operation, maximum power density of 39.95 and 56.87 mW/m2 and maximum current density of 180.83 and 295 mA/m2 were obtained in MFC-1 and MFC-2, respectively. Under continuous mode of operation, a reduction in power and current density was observed. Even with less surface area of the anode, MFC-2 produced more current (1.77 mA) than MFC-1 (1.40 mA). Among the cathodic electrolyte tested, these can be listed in decreasing order of power density as aerated KMnO4 solution > KMnO4 solution without aeration > aerated tap water > aerated tap water with NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rabaey, K., & Verstraete, W. (2005). Trends in Biotechnology, 23(6), 291–298.

    Article  CAS  Google Scholar 

  2. Zhang, X. C., & Aarme, H. (1995). Biotechnology Letters, 17(8), 809–814.

    Article  CAS  Google Scholar 

  3. Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domiguez, E. R. (2004). Trends in Biotechnology, 22(9), 477–485.

    Article  CAS  Google Scholar 

  4. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., & Kim, B. H. (2004). Process Biochemistry, 39, 1007–1012.

    Article  CAS  Google Scholar 

  5. Pham, C. A., Jung, S. J., Phung, N. T., Lee, J., Chang, I. S., Kim, B. H., Yi, H., & Chun, J. (2003). FEMS Microbiology Letters, 223, 129–134.

    Article  CAS  Google Scholar 

  6. Oh, S., Min, B., & Logan, B. E. (2004). Environmental Science & Technology, 38, 4900–4904.

    Article  CAS  Google Scholar 

  7. You, S., Zhao, Q., Zhang, J., Jiang, J., & Zhao, S. (2006). Journal of power sources, 162, 1409–1415.

    Article  CAS  Google Scholar 

  8. Cheng, S., Liu, H., & Logan, B. E. (2006). Electrochemistry Communications, 8, 489–494.

    Article  CAS  Google Scholar 

  9. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., & Kim, H. J. (2003). Biosensors and Bioelectronics, 18, 327–334.

    Article  CAS  Google Scholar 

  10. Liu, H., & Logan, B. E. (2004). Environmental Science and Technology, 38, 4040–4046.

    Article  CAS  Google Scholar 

  11. Kim, B. H., Chang, I. S., & Gadd, G. M. (2007). Applied Microbiology and Biotechnology, 76, 485–494.

    Article  CAS  Google Scholar 

  12. Ghangrekar, M. M., & Shinde, V. B. (2007). Bioresource Technology, 98, 2879–2885.

    Article  CAS  Google Scholar 

  13. Ginkel, S. V., Sung, S., & Lay, J. J. (2001). Environmental Science & Technology, 35, 4726–4730.

    Article  CAS  Google Scholar 

  14. APHA, AWWA, WPCF (1998). Standard Methods for examination of water and wastewater, 20th edn. Washington, DC: American Public Health Association.

  15. Picoreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C. M., & Scott, K. (2007). Water Research, 41, 2921–2940.

    Article  Google Scholar 

  16. Tartakovsky, B., & Guiot, S. R. (2006). Biotechnology Progress, 22, 241–246.

    Article  CAS  Google Scholar 

  17. Venkata Mohan, S., Saravanan, R., Veer Raghavulu, S., Mohanakrishna, G., & Sarma, P. N. (2008). Bioresource Technology, 99, 596–603.

    Article  CAS  Google Scholar 

  18. Zhang, T., Cui, C., Chen, S., Yang, H., & Shen, P. (2008). Electrochemistry Communications, 10, 293–297.

    Article  CAS  Google Scholar 

  19. Biffinger, J. C., Byrd, J. N., Dudley, B. L., & Ringeisen, B. R. (2008). Biosensors and Bioelectronics, 23, 820–826.

    Article  CAS  Google Scholar 

  20. Liu, H., Cheng, S., & Logan, B. E. (2005). Environmental Science & Technology, 39, 5488–5493.

    Article  CAS  Google Scholar 

  21. Pham, T. H., Jang, J. K., Moon, H. S., Chang, I. S., & Kim, D. H. (2005). Journal of Microbiology & Biotechnology, 17, 438–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ghangrekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, G.S., Ghangrekar, M.M. Improving Performance of MFC by Design Alteration and Adding Cathodic Electrolytes. Appl Biochem Biotechnol 151, 319–332 (2008). https://doi.org/10.1007/s12010-008-8195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8195-2

Keywords

Navigation