Skip to main content
Log in

Evaluation of Lignocellulosic Wastes for Production of Edible Mushrooms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The degradation of lignocellulosic wastes such as paddy straw, sorghum stalk, and banana pseudostem was investigated during solid-state fermentation by edible mushrooms Pleurotus eous and Lentinus connotus. Biological efficiency of 55–65% was observed in paddy straw followed by sorghum stalk (45%) and banana pseudostem (33%) for both fungal species. The activity of extracellular enzymes, namely cellulase, polyphenol oxidase, and laccase, together with the content of cellulose, lignin, and phenols, was studied in spent substrates on seventh, 17th, and 27th days of spawning, and these values were used as indicators of the extent of lignocellulosic degradation by mushroom. Both the mushroom species proved to be efficient degraders of lignocellulosic biomass of paddy straw and sorghum stalk, and the extent of cellulose degradation was 63–72% of dry weight (d.w.), and lignin degradation was 23–30% of the d.w. In banana pseudostem, the extent of the degradation was observed to be only 15–22% of the d.w. for both lignin and cellulose. Preferential removal of cellulose during initial growth period and delayed degradation of lignin were observed in all three substrates. This is associated with decrease in activity of cellulase and polyphenol oxidase and increase in laccase activity with spawn aging in spent substrates. Thus, bioconversion of lignocellulosic biomass by P. eous and L. connotus offers a promising way to convert low-quality biomass into an improved human food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, R., Li, X., & Fadel, J. G. (2002). Bioresource Technology, 82, 277–284.

    Article  CAS  Google Scholar 

  2. Vetayasuporn, S. (2006). Research Journal of Agricultural & Biological Science, 2(6), 548–551.

    Google Scholar 

  3. Mane, V. P., Patil, S. S., Syed, A. A., & Baig, M. M. V. (2007). Journal of Zhejiang University, Science B, 8(10), 745–751.

    Article  CAS  Google Scholar 

  4. Marimuthu, T., & Krishnamoorthy, A. S. (1991). Glimpses of mushroom research in TNAU (2nd ed.). Coimbatore: Tamilnadu Agricultural University.

    Google Scholar 

  5. Bandari, T. P. S., Singh, R. N., & Verma, B. L. (1991). Indian Phytopathology, 44(4), 5–59.

    Google Scholar 

  6. Nallathambi, P., & Marimuthu, T. (1993). Mushroom Research, 2(2), 50–52.

    Google Scholar 

  7. Chahal, D. S. (1989). Journal of Fermentation and Bioengineering, 69(5), 334–338.

    Article  Google Scholar 

  8. Hayes, W. A. (1988). New Scientist, 44, 450–452.

    Google Scholar 

  9. Rai, R. D., & Saxena, S. (1990). Mushroom Journal for the Tropics, 10, 69–73.

    Google Scholar 

  10. Bano, Z., & Srivastava, H. C. (1962). Food Science, 12, 363–368.

    Google Scholar 

  11. Royse, D. J., & Bahler, C. C. (1986). Applied and Environmental Microbiology, 52(6), 14–26.

    Google Scholar 

  12. Browning, B. L. (1967). Methods in Wood Chemistry (pp. 785–787). New York, USA.: Interscience.

    Google Scholar 

  13. Updegroff, D. M. (1969). Estimation of cellulose. Analytical Biochemistry, 32, 420–424.

    Article  Google Scholar 

  14. Bray, H. G., & Thorpe, W. V. (1954). Methods of Biochemical Analysis, 1, 27–52.

    Article  CAS  Google Scholar 

  15. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Rendall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  16. Criquet, S., Tagger, S., Voger, G., Iacazio, G., & Petit, J. (1999). Soil Biology & Biochemistry, 31, 1239–1244.

    Article  CAS  Google Scholar 

  17. Robertson, L. D, & Koehn, R. D. (1978). Mycologia, 70(5), 1113–1121.

  18. Mahadevan, A., & Sridhar, R. (1986). Methods in physiological plant pathology (pp. 214–216). Madras: Sivakami.

    Google Scholar 

  19. Esterbaner, H., Schwarzl, E., & Hayn, M. (1977). Analytical Biochemistry, 77, 486–489.

    Article  Google Scholar 

  20. Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods (7th ed.). Ames, IA: Iowa State University Press.

    Google Scholar 

  21. Garcha, H. S., Ohanda, S., & Khanna, P. (1984). Mushroom Newsletter for the Tropics, 5(1), 13–16.

    Google Scholar 

  22. Singh, A. K., Awasthi, S. K., & Dwivedi, R. (1992). National Academy Science Newsletter, 15(5), 137–139.

    Google Scholar 

  23. Bisaria, R., Madan, M., & Bisaria, V. S. (1987). Biological Wastes, 19, 239–255.

    Article  CAS  Google Scholar 

  24. Belewu, M. A., & Belewu, K. Y. (2005). African Journal of Biotechnology, 4(12), 1401–1403.

    Google Scholar 

  25. Baysal, E., Peker, H., Yalinkilic, M. K., & Temiz, A. (2003). Bioresource Technology, 89, 95–97.

    Article  CAS  Google Scholar 

  26. Diwakar, B., Munjal, R. L., & Bahukhandi, D. (1989). Indian Phytopathology, 42(4), 492–499.

    Google Scholar 

  27. Patrabansh, S., & Madan, M. (1995). Acta Biotechnologica, 15(1), 131–135.

    Article  Google Scholar 

  28. Hammond, J. B. W. (1986). Mushroom Journal, 165, 316–320.

    Google Scholar 

  29. Ginterova, A., & Lazarova, A. (1987). Microbiology, 32, 434–437.

    CAS  Google Scholar 

  30. Ghosh, M., Mukherjee, R., & Nandi, B. (1998). Acta Biotechnologica, 18(3), 243–254.

    Article  CAS  Google Scholar 

  31. Platt, M. W., Hadar, Y., Henis, Y., & Chet, I. (1983). European Journal of Applied Microbiology and Biotechnology, 17, 140–142.

    Article  CAS  Google Scholar 

  32. Theradimani, M., & Marimuthu, T. (1992). Mushroom Research, 1, 49–51.

    Google Scholar 

  33. Kirk, T. K., Connors, W. J., & Zeikus, J. (1968). Applied and Environmental Microbiology, 32, 192–194.

    Google Scholar 

  34. Natarajan, K., Kaviyarasan, V., & Kadirvel, R. (1993). Mushroom Research, 2, 65–68.

    Google Scholar 

Download references

Acknowledgment

The authors thank Dr.V. Ramamurthy, Head of the Department of Biotechnology, and Dr. Selvi Subramanian, Department of Biotechnology, PSG College of Technology, Coimbatore, for their valuable guidance and support. This work was supported by the Department of Biotechnology, Government of India, New Delhi, India (BT/PR4802/SPD/09/400/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, P., Kalyani, N. & Prathiba, K. Evaluation of Lignocellulosic Wastes for Production of Edible Mushrooms. Appl Biochem Biotechnol 151, 151–159 (2008). https://doi.org/10.1007/s12010-008-8162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8162-y

Keywords

Navigation