A review of biodegradation of synthetic plastic and foams

Abstract

Synthetic polymeric foams have pervaded every aspect of modern life. Although foams provide numerous benefits, they also cause a significant environmental litter problem because of their recalcitrant and xenobiotic nature. Biodegradation may provide solution to the problem, but not enough is known about the biodegradation process of synthetic plastic and plastic-based foams. This review has been written to provide an overview of the current state of plastic foam biodegradation. Several biodegradation pathways of a few select synthetic polymers are also presented along with a discussion on some of the physico-chemical factors that can influence the biodegradation of plastic foams.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lokensgard, E. (2004) Industrial Plastics: Theory and Applications, 4th ed. Thomson Delmar Learning, Clifton Park, New York.

    Google Scholar 

  2. 2.

    Carraher, C. E. (1996) Seymour/Carraher's Polymer Chemistry an Introduction, 4th ed. Marcel Dekker Inc., New York.

    Google Scholar 

  3. 3.

    http://library.thinkquest.org/03oct/00647/id28.htm last visited December 07, 2005.

  4. 4.

    Mizoguchi, H. (1998) in Proceedings of the International Conference on Sponge Science (Watanabe, Y., and Fusetani, N., eds.), Springer, Tokyo: pp. 427–439.

    Google Scholar 

  5. 5.

    Shimao, M. (2001) Curr. Opin. Biotechnol. 12, 242–247.

    Article  CAS  Google Scholar 

  6. 6.

    Andrady, A. (2003) Plastics and the Environment. Wiley Interscience, NJ.

    Google Scholar 

  7. 7.

    Thomson, T. (2005) Polyurethanes as Specialty Chemicals Principles and Applications. CRC, Boca Raton, FL.

    Google Scholar 

  8. 8.

    The Freedonia Group (2003) Report: “Specialty Foams—U.S. Industry Study, With Forecasts to 2007 & 2012”. Freedonia.

  9. 9.

    Global Information Inc. (2005) European Markets for Polymer Foams, Frost & Sullivans.

  10. 10.

    Zheng, Y., Yanful, E., and Bassi, A. (2005), Crit. Rev. Biotechnol. 25(4), 243–250.

    Article  CAS  Google Scholar 

  11. 11.

    Nakajima-Kambe, T., Onuma, F., Shigeno-Akutsu, Y., and Nakahara, T. (1997) J. Ferment. Bioeng. 83, 456–460.

    Article  CAS  Google Scholar 

  12. 12.

    Klempner, D. and Sendijarevic, V. (2004) Handbook of Polymeric Foams and Foam Technology, 2nd ed. Hanser Publishers, Munich.

    Google Scholar 

  13. 13.

    Frisch, K. C. and Saunders, J. H. (1972) Plastic Foams Part I. Marcel Dekker, Inc., New York.

    Google Scholar 

  14. 14.

    Saunders, J. H. and Klempner, D. (2004) in Handbook of Polymeric Foams and Foam Technology (Klempner, D. and Sendijarevic, V., eds.), Hanser Publishers Cincinnati: pp. 5–15.

    Google Scholar 

  15. 15.

    Khemani, C. K. (1997) Polymeric Foams Science and Technology. American Chemical Society Symposium Series 669, Washington DC.

  16. 16.

    Bruins, P. F. (1969) Polyurethane Technology. John Wiley and Sons, N.Y.

    Google Scholar 

  17. 17.

    Potts, J. E. (1978) in Aspects of Degradation and Stabilization of Polymers (Jellinek, H.H.G., ed.). Elsevier Scientific Publishing Company, Amsterdam, pp. 617–657.

    Google Scholar 

  18. 18.

    McCarthy, S. P. (2003) in Plastics and the Environment (Andrady, A. L., ed.), John Wiley and Sons, NJ: pp. 359–377.

    Google Scholar 

  19. 19.

    Li, S. and Vert, M. (1995) in Degradable Polymers Principles & Applications (Scott, G. and Gilead, D., eds.), Chapman & Hall, UK: pp. 43–87.

    Google Scholar 

  20. 20.

    Bushnell, L. D. and Haas, H. F. (1941) J. Bacteriol. 41, 653–673.

    CAS  Google Scholar 

  21. 21.

    Berk, S., Elbert, H., and Teitell, L. (1957) Ind. Eng. Chem. Res. 49, 1115–1124.

    Article  CAS  Google Scholar 

  22. 22.

    Iiyoshi, Y., Tsutsumi, Y., and Nishida, T. (1998) Journal of Wood Science 44, 222–229.

    Article  CAS  Google Scholar 

  23. 23.

    Brown, B. S., Mills, J., and Hulse, J. M. (1994) Nature 250, 161–163.

    Article  Google Scholar 

  24. 24.

    Deguchi, T., Kitaoka, Y., Kakezawa, M., and Nishida, T. (1998) App. Environ. Microbiol. 64(4), 1366–1371.

    CAS  Google Scholar 

  25. 25.

    Howard, G. T. (2002) Int. Biodeterior. Biodegradation 49, 245–252.

    Article  CAS  Google Scholar 

  26. 26.

    Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F., and Nakahara, T. (1999) Appl. Microbiol. Biotechnol. 51, 134–140.

    Article  CAS  Google Scholar 

  27. 27.

    Kaserer, H. (1906) Zentr. Bakt. Parasitenk., Abt II 15, 573–576.

    Google Scholar 

  28. 28.

    Songhen, N. L. (1906) Zentr. Bakt. Parasitenk. Abt. II 15, 513–517.

    Google Scholar 

  29. 29.

    Karlsson, S. and Albertsson, A.-C. (1995) in Degradable Polymers (Scott, G. and Gilead, D. eds.), Chapman & Hall, UK: pp. 29–42.

    Google Scholar 

  30. 30.

    Albertsson, A.-C. (1992) in Handbook of Polymer Degradation (Hamid, S. H., Amin, M. B., and Maadhah, A. G., eds.), Marcel Dekker Inc., NY: pp. 345–363.

    Google Scholar 

  31. 31.

    Albertsson, A.-C. (1978) Journal of Applied Polymer Science 22, 3419–3433.

    Article  CAS  Google Scholar 

  32. 32.

    Griffin, G. J. L. (1977) Biodegradable synthetic resin sheet material containing starch and a fatty material. US Pat. 4,016,117.

  33. 33.

    Stark, N. M. (2003) Ph.D. Thesis, Michigan Technological University, USA.

  34. 34.

    Amin, M. U. and Scott, G. (1974) European Polymer Journal 10, 1019–1028.

    Article  CAS  Google Scholar 

  35. 35.

    Pometto, A. L., Johnson, K. E., and Kim, M. (1993) J. Environ. Polym. Degrad. 1 (3), 213–221.

    Article  CAS  Google Scholar 

  36. 36.

    Lee, B., Pometto III, A. L., Fratzke, A., and Bailey Jr., T. B. (1990) Appl. Environ. Microbiol. 57(3), 678–685.

    Google Scholar 

  37. 37.

    Hakkarainen, M., Khabbaz, F., Albertsson, A.-C. (2003) in Biopolymers. Miscellaneous Biopolymers and Biodegradation of Synthetic Polymers Volume 9 (Matsumura, S. and Steinbuchel, A., eds.), Wiley-VCH, Germany: pp. 369–394.

    Google Scholar 

  38. 38.

    Pometto III, A. L., Lee, B., and Johnson, K. E. (1992) Appl. Environ. Microbiol. 58 (2), 731–733.

    CAS  Google Scholar 

  39. 39.

    Koutny, M., Lemaire, J., Delort, A.-M. (2006) Chemosphere, Article in press (available online).

  40. 40.

    Albertsson, A.-C., Andersson, S. O., and Karlsson, S. (1987) Polymer Degradation and Stability 18, 73–87.

    Article  CAS  Google Scholar 

  41. 41.

    Fabino, M. (1998) M.Sc. Thesis, McGill University, Canada.

  42. 42.

    Albertsson, A.-C. and Karlsson, S. (1988) Journal of Applied Polymer Science 35, 1289–1302.

    Article  CAS  Google Scholar 

  43. 43.

    Deguchi, T., Kakezawa, M., and Nishida, T. (1997) Appl. Environ. Microbiol. 63 (1), 329–331.

    CAS  Google Scholar 

  44. 44.

    Tomita, K., Ikeda, N., and Ueno, A. (2003) Biotechnol. Lett, 25, 1743–1746.

    Article  CAS  Google Scholar 

  45. 45.

    Deguchi, T., Kitaoka, Y., Kakezawa, M., and Nishida, T. (1998) Appl. Environ Microbiol. 64(4), 1366–1371.

    CAS  Google Scholar 

  46. 46.

    Prijambada, I. D., Negoro, S., Yomo, T., and Urabe, I. (1995) Appl. Environ. Microbiol. 61(5), 2020–2022.

    CAS  Google Scholar 

  47. 47.

    Kakudo, S., Negoro, S., Urabe, I., and Okada, H. (1993) Appl. Environ. Microbiol. 59(11), 3978–3980.

    CAS  Google Scholar 

  48. 48.

    Kanagawa, K., Oishi, M., Negoro, S., Urabe, I., and Okada, H. (1993) J. Gen. Microbiol. 139, 787–795.

    CAS  Google Scholar 

  49. 49.

    Negoro, S. (2003) in Biopolymers Volume 9 (Matsumura, S. and Steinbuchel, A., eds.), Wiley, Germany: pp. 395–412.

    Google Scholar 

  50. 50.

    Negoro, S. (2000) Appl. Microbiol. Biotechnol. 54, 461–466.

    Article  CAS  Google Scholar 

  51. 51.

    Nomura, N., Deguchi, T., Shigeno-Akutsu, Y., Nakajima-Kambe, T., and Nakahara, T. (2001) Biotechnol. Genet. Eng. Rev. 18, 125–147.

    CAS  Google Scholar 

  52. 52.

    Kinoshita, S., Negoro, S., Muramatsu, M., Bisaria, V. S., Sawada, S., and Okada, H. (1977) Eur. J. Biochem. 80, 489–495.

    Article  CAS  Google Scholar 

  53. 53.

    Kinoshita, S., Terada, T., Taniguchi, T., Takene, Y., Masuda, S., Matsunaga, N., and Okada, H. (1981) Eur. J. Biochem. 116, 547–551.

    Article  CAS  Google Scholar 

  54. 54.

    Negoro, S., Kakudo, S., Urabe, I., and Okada, H. (1992) J. Bacteriol. 174, 7948–7953.

    CAS  Google Scholar 

  55. 55.

    Kanagawa, K., Negoro, S., Takada, N., and Okada, H. (1989) J. Bacteriol. 171, 3181–3186.

    CAS  Google Scholar 

  56. 56.

    Kato, K., Ohtsuki, K., Koda, Y., et al. (1995) Microbiology 141 2585–2590.

    CAS  Article  Google Scholar 

  57. 57.

    Negoro, S., Mitamura, T., Oka, K., Kanagawa, K., and Okada, H. (1989) Eur. J. Biochem. 185, 521–524.

    Article  CAS  Google Scholar 

  58. 58.

    Higashimura, T., Sawamoto, M., Hiza, T., Karaiwa, M., Tsuchii, A., and Suzuki, T. (1983) Appl. Environ. Microbiol. 46(2), 386–391.

    CAS  Google Scholar 

  59. 59.

    Milstein, O., Gersonde, R., Huttermann, A., Chen, M.-J., and Meister, J. J. (1992) Appl. Environ. Microbiol. 58(10), 3225–3232.

    CAS  Google Scholar 

  60. 60.

    Guillet, J. E., Regulski, T. W., and McAneney, T. B. (1974) Environ. Sci. Technol. 8 (10), 923–925.

    Article  CAS  Google Scholar 

  61. 61.

    Nakamiya, K., Sakasita, G., Ooi, T., and Kinoshita, S. (1997) J. Ferment. Bioeng. 84(5), 480–482.

    Article  CAS  Google Scholar 

  62. 62.

    Faber, M. (1979) Enzyme Microb. Technol. 1, 226–232.

    Article  CAS  Google Scholar 

  63. 63.

    Tsuchii, A., Hiraguri, Y., and Tokiwa, Y. (2003) in Biopolymers Miscellaneous Biopolymers and Biodegradation of Synthetic Polymers Volume 9 (Matsumura, S., and Steinbuchel, A., eds.). Wiley-VCH, Germany: pp. 363–368.

    Google Scholar 

  64. 64.

    Szycher, M. (1999) Szycher's Handbook of Polyurethanes, CRC, Boca Raton, FL.

    Google Scholar 

  65. 65.

    Shigeno-Akutsu, Y., Nakajima-Kambe, T., Nomura, N., and Nakahara, T. (1998) Appl. Environ. Microbiol. 64(1), 62–67.

    Google Scholar 

  66. 66.

    Nomura, N., Akutsu, S., Nakajima-Kambe, T., and Nakahara, T. (1998) J. Ferment. Bioeng. 86, 339–345.

    Article  CAS  Google Scholar 

  67. 67.

    Ruiz, C., Main, T., Hilliard, N., and Howard, G. T. (1999) Int. Biodeterior. Biodegradation 43, 43–47.

    Article  CAS  Google Scholar 

  68. 68.

    Nomura, N., Deguchi, T., Shigeno-Akutsu, Y., Namajima-Kambe, T., and Nakahara, T. (2001) Biotechnol. Genet. Eng. Rev. 18, 125–147.

    CAS  Google Scholar 

  69. 69.

    Edmonds, P. and Cooney, J. J. (1968) Appl. Microbiol. 16(2), 426–427.

    CAS  Google Scholar 

  70. 70.

    Hedrick, H. G., and Crum, M. G. (1968) Am. Soc. Microbiol. 16(12), 1826–1830.

    Google Scholar 

  71. 71.

    Filip, Z. (1978) European Journal of Applied Microbiology and Biotechnology 5, 225–231.

    Article  CAS  Google Scholar 

  72. 72.

    Pathirana, R. A. and Seal, K. J. (1985) Int. Biodeterior. Biodegradation 21(1), 41–49.

    CAS  Google Scholar 

  73. 73.

    Darby, R. T. and Kaplan, A. M. (1968) Appl. Microbiol 16(6), 900–905.

    CAS  Google Scholar 

  74. 74.

    Martens, R. and Domsch, K. H. (1981) Water Air Soil Pollut. 15, 503–509.

    Article  CAS  Google Scholar 

  75. 75.

    Expandable Polystyrene Molders Association (2004) Test Initiatives Highlights EPS Performance. EPS Newsline 8, 1–8.

    Google Scholar 

  76. 76.

    ASTM C1338-00 Standard Test Method for Determining Fungi Resistance of Insulation Materials and Facings.

  77. 77.

    Hocking, M. B. (1991) Science 251, 504–505.

    Article  Google Scholar 

  78. 78.

    Kaplan, D. L., Hartenstein, R., and Sutter, J. (1979) Appl. Environ. Microbiol. 38 (3), 551–553.

    CAS  Google Scholar 

  79. 79.

    Bahari, K., Mitomo, H., Yoshiic, T. E., and Kakuuchic, K. (1998) Polym. Degrad. Stab. 62, 551–557.

    Article  CAS  Google Scholar 

  80. 80.

    Voet, D., Voet, J. G., and Pratt, C. W. (2006) Fundamentals of Biochemistry 2nd Edition. John Wiley & Sons.

  81. 81.

    Ramos, J. L., Diaz, E., Dowling, D., et al. (1994) Nat. Biotechnol. 12, 1349–1356.

    Article  CAS  Google Scholar 

  82. 82.

    Nisbet, E. G. and Sleep, N. H. (2001) Nature 409, 1083–1091.

    Article  CAS  Google Scholar 

  83. 83.

    Szathmary, E. and Smith, J. M. (1995) Nature 374, 227–232.

    Article  CAS  Google Scholar 

  84. 84.

    Bailey, J. E. and Ollis, D. F. (1986) Biochemical Engineering Fundamentals 2nd Edition. McGraw-Hill, New York.

    Google Scholar 

  85. 85.

    Koshland Jr., D. E. (1994) Angewandte Chemic International Edition in English 33(23–24), 2375–2378.

    Google Scholar 

  86. 86.

    Omichi, H. (1992) in Handbook of Polymer Degradation, (Hamid, S. H., Amin, M. B., and Maadhah, A. G., eds.). Marcel Dekker: pp. 335–344.

  87. 87.

    Kelen, T. (1983) Polymer Degradation. Van Nostrand Reinhold Company, NY.

    Google Scholar 

  88. 88.

    Suzuki, T., Hukushima, K., and Suzuki, S. (1978) Environ. Sci. Technol. 12(10), 1180–1183.

    Article  CAS  Google Scholar 

  89. 89.

    Kay, M. J., Morton, L. H. G., and Prince, E. L. (1991) Int. Biodeterior. Biodegradation 27, 205–222.

    CAS  Google Scholar 

  90. 90.

    Business Communications Company Inc. Press Release (2001) Biodegradable polymers. www.bccresearch.com/press.

Download references

Authors

Additional information

Department of Chemical and Biochemical Engineering

Department of Civil and Environmental Engineering

Author to whom all correspondence and reprint requests should be addressed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gautam, R., Bassi, A.S. & Yanful, E.K. A review of biodegradation of synthetic plastic and foams. Appl Biochem Biotechnol 141, 85–108 (2007). https://doi.org/10.1007/s12010-007-9212-6

Download citation

Index Entries

  • Plastic foam
  • synthetic polymer
  • biodegradation