Skip to main content
Log in

Structure-function relationships of a catalytically efficient β-D-xylosidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-d-Xylosidase from Selenomonas ruminantium is revealed as the best catalyst known (k cat, k cat/K m) for promoting hydrolysis of 1,4-β-d-xylooligosaccharides. 1H nuclear magnetic resonance experiments indicate the family 43 glycoside hydrolase acts through an inversion mechanism on substrates 4-nitrophenyl-β-d-xylopyranoside (4NPX) and 1,4-β-d-xylobiose (X2). Progress curves of 4-nitrophenyl-β-d-xylobioside, xylotetraose and xylohexaose reactions indicate that one residue from the nonreducing end of substrate is cleaved per catalytic cycle without processivity. Values of k cat and k cat/K m decrease for xylooligosaccharides longer than X2, illustrating the importance to catalysis of subsites −1 and +1 and the lack there of subsite +2. Homology models of the enzyme active site with docked substrates show that subsites bey ond−1 are blocked by protein and subsites bey ond +1 are not formed; they suggest that D14 and E186 serve catalysis as general base and general acid, respectively. Individual mutations, D14A and E186A, erode k cat and k cat/K m by <103 and to asimilar extent for substrates 4NPX and 4-nitrophenyl-α-l-arabinofuranoside (4NPA), indicating that the two substrates share the same active site. With 4NPX and 4NPA, pH governs k cat/K m with pK a values of 5.0 and 7.0 assigned to D14 and E186, respectively. k cat (4NPX) has a pK a value of 7.0 and k cat (4NPA) is pH independent above pH 4.0, suggesting that the catalytically inactive, “dianionic” enzyme form (D14-E187-) binds 4NPX but not 4NPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saha, B. C. (2003), J. Ind. Microbiol. Biotechnol. 30, 279–291.

    Article  CAS  Google Scholar 

  2. Zechel, D. L., and Withers, S. G. (2001), Curr. Opin. Chem. Biol. 5, 643–649.

    Article  CAS  Google Scholar 

  3. Sinnott, M. L. (1990), Chem. Rev. 90, 1171–1202.

    Article  CAS  Google Scholar 

  4. Herrmann, M. C., Vrsanska, M., Jurickova, M., Hirsch, J., Biely, P., and Kubicek, C. P. (1997), Biochem. J. 321, 375–381.

    CAS  Google Scholar 

  5. Marshall, P. J., and Sinnott, M. L. (1983), Biochem. J. 215, 67–74.

    CAS  Google Scholar 

  6. Shallom, D., Leon, M., Bravman, T., Ben-David, A., Zaide, G., Belakhov, V., Shoham, G., Schomburg, D., Baasov, T., and Shoham, Y. (2005), Biochemistry 44, 387–397.

    Article  CAS  Google Scholar 

  7. Vocadlo, D. J., Wicki, J., Rupitz, K., and Withers, S. G. (2002), Biochemistry 41, 9727–9735.

    Article  CAS  Google Scholar 

  8. Bravman, T., Zolotnitsky, G., Belakhov, V., Shoham, G., Henrissat, B., Baasov, T., and Shoham, Y. (2003), Biochemistry 42, 10,528–10,536.

    Article  CAS  Google Scholar 

  9. Lee, R. C., Hrmova, M., Burton, R. A., Lahnstein, J., and Fincher, G. B. (2003), J. Biol. Chem. 278, 5377–5387.

    Article  CAS  Google Scholar 

  10. Cotta, M. A. (1993), Appl. Environ. Microbiol. 59, 3557–3563.

    CAS  Google Scholar 

  11. Williams, A. G., Withers, S. E., and Joblin, K. N. (1991), Lett. Appl. Microbiol. 12, 232–235.

    CAS  Google Scholar 

  12. Cotta, M. A., and Whitehead, T. R. (1998), Curr. Microbiol. 36, 183–189.

    Article  CAS  Google Scholar 

  13. Whitehead, T. R., and Cotta, M. A. (2001), Curr. Microbiol. 43, 293–298.

    Article  CAS  Google Scholar 

  14. Barshop, B. A., Wrenn, R. F., and Frieden, C. (1983), Anal. Biochem. 130, 134–145.

    Article  CAS  Google Scholar 

  15. Guex, N., and Peitsch, M. C. (1997), Electrophoresis 18, 2714–2723.

    Article  CAS  Google Scholar 

  16. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004), J. Comput. Chem. 25, 1605–1612.

    Article  CAS  Google Scholar 

  17. Sanner, M. F., Olson, A. J., and Spehner, J. C. (1996), Biopolymers 38, 305–320.

    Article  Google Scholar 

  18. Gill, S. C., and von Hippel, P. H. (1989), Anal. Biochem. 182, 319–326.

    Article  CAS  Google Scholar 

  19. Kezdy, F. J., and Bender, M. L. (1962), Biochemistry 1, 1097–1106.

    Article  CAS  Google Scholar 

  20. Nurizzo, D., Turkenburg, J. P., Charnock, S. J., Roberts, S. M., Dodson, E. J., McKie, V. A., Taylor, E. J., Gilbert, H. J., and Davies, G. J. (2002), Nat. Struct. Biol. 9, 665–668.

    Article  CAS  Google Scholar 

  21. Davies, G. J., Wilson, K. S., and Henrissat, B. (1997), Biochem. J. 321, 557–559.

    CAS  Google Scholar 

  22. Kersters-Hilderson, H., Claeyssens, M., Van Doorslaer, E., and De Bruyne, C. K. (1976), Carbohydr. Res. 47, 269–273.

    Article  CAS  Google Scholar 

  23. Braun, C., Meinke, A., Ziser, L., and Withers, S. G. (1993), Anal. Biochem. 212, 259–262.

    Article  CAS  Google Scholar 

  24. Van Doorslaer, E., Kersters-Hilderson, H., and De Bruyne, C. K. (1985), Carbohydr. Res. 140, 342–346.

    Article  Google Scholar 

  25. Wagschal, K., Franqui-Espiet, D., Lee, C. C., Robertson, G. H., and Wong, D. W. (2005), Appl. Environ. Microbiol. 71, 5318–5323.

    Article  CAS  Google Scholar 

  26. Kimura, I., and Tajima, S. (1999), J. Biosci. Bioeng. 87, 572–575.

    Article  CAS  Google Scholar 

  27. Wolfenden, R., Lu, X., and Young, G. (1998), J. Am. Chem. Soc. 120, 6814–6815.

    Article  CAS  Google Scholar 

  28. Cleland, W. W. (1982), Methods Enzymol. 87, 390–405.

    Article  CAS  Google Scholar 

  29. Ferrer, M., Golyshina, O. V., Chernikova, T. N., Khachane, A. N., Reyes-Duarte, D., Martins Dos Santos, V. A. P., Strompl, C., Elborough, K., Jarvis, G., Neef, A., Yakimov, M. M., Timmis, K. N., and Golyshin, P. N. (2005), Environ. Microbiol. 7, 1996–2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Jordan.

Additional information

The mention of firm names or trade products does not imply that they are end orsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, D.B., Li, XL., Dunlap, C.A. et al. Structure-function relationships of a catalytically efficient β-D-xylosidase. Appl Biochem Biotechnol 141, 51–76 (2007). https://doi.org/10.1007/s12010-007-9210-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9210-8

Index Entries

Navigation