Skip to main content
Log in

Purification and properties of a β-galactosidase with potential application as a digestive supplement

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Functional-based screening of crude β-galactosidase activities from 42 yeast strains resulted in the selection of a single enzyme of potential interest as a digestive supplement. β-Galactosidase produced by Kluyveromyces marxianus DSM5418 was purified to homogeneity by a combination of gel filtration, ion-exchange, and hydroxylapatite chromatographies. The denatured (123 kDa) and native molecular masses (251 kDa) suggest that the enzyme is a homodimer. The optimum pH and temperature of the purified enzyme were 6.8 and 37°C, respectively. The unpurified β-galactosidase in particular displayed a high level of stability when exposed to simulated intestinal conditions in vitro for 4 h. Matrix-assisted laser desorption ionization mass sectrometry analysis revealed that the enzyme's trypsin-generated peptide mass fingerprint shares several peptide fragment hits with β-galactosidases from Kluyveromyces lactis. This confirms the enzyme's identity and indicates that significant sequence homology exists between these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holsinger V. (1988), in Fundamentals of Dairy Chemistry, Wong, P., ed., Van Nostrand Renhold, New York, NY, pp. 279–341.

    Google Scholar 

  2. Gaska, J. (1990), Am. Drug 202, 36–43.

    Google Scholar 

  3. Lin, M., Dipalma, J., Martini, M., Gross, C., Harlander, S., and Savaiano, D. (1993), Dig. Dis. Sci. 38, 2022–2027.

    Article  CAS  Google Scholar 

  4. Sanders, S., Tolman, K., and Reitberg, D. (1992). Clin. Pharm. 11, 533–538.

    CAS  Google Scholar 

  5. Ramirez, F., Lee, K., and Graham, D. (1994). Am. J. Gastroenterol. 89, 566–570.

    CAS  Google Scholar 

  6. Nakayama, T. and Amachi, T. (1999), in Encyclopedia of Bioprocess Technology, Fermentation, Biocatalysis and Bioseparation, Flinckinger, D., ed., John Wiley and Sons, New York, pp. 1291–1305.

    Google Scholar 

  7. Geskas, V. and Lopez-Levia, M. (1985). Process Biochem. 20, 2–12.

    Google Scholar 

  8. O'Connell, S. and Walsh, G. Appl. Biochem. Biotechnol. 134 (2), 179–191.

  9. http://www.dsmz.de/media.

  10. Nevalainen, H. (1981), Appl. Environ. Microbiol. 41, 593–596.

    CAS  Google Scholar 

  11. Mahoney, R., Nickerson, T., and Whitaker, J. (1975), J. Dairy Sci. 58, 1620–1629.

    CAS  Google Scholar 

  12. Mahoney, R. and Whitaker, J. (1978). J. Food Sci. 43, 584–591.

    Article  CAS  Google Scholar 

  13. Mahoney, R. and Whitaker, J. (1977). J. Food Biochem. 1, 327–350.

    Article  CAS  Google Scholar 

  14. Bradford, M. (1976). Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  15. Laemmli, U. (1970), Nature 227, 680–685.

    Article  CAS  Google Scholar 

  16. BIO-RA D Model 111 mini IEF cell instruction manual. (2004), Bio-Rad, Hercules, CA.

  17. Nagy, Z., Kiss, T., Szentirmai, A., and Biro, S. (2001), Prot. Expr. Purif. 21, 24–29.

    Article  CAS  Google Scholar 

  18. Shaikh, S.A., Khire, J. M., and Khan, M. I. (1999). Biochim. Biophys. Acta 1472, 314–322.

    CAS  Google Scholar 

  19. Xenos, K., Kyroundis, S., Anagnostidis, A., and Papastathopoulos, P. (1998), Eur. J. Drug Metab. Pharmacokinet. 23, 350–355.

    Article  CAS  Google Scholar 

  20. Ingels, F., Deferme, S., Destexhe, E., Oth, M., Van den Mooter, G., and Augustijns, P. (2002), Int. J. Pharm. 232, 183–192.

    Article  CAS  Google Scholar 

  21. United States Pharmacopocia, USP 25/NF 23 (2000), US pharmocopoeial convention, Rockville, MD.

  22. Chakraborti, S., Sani, R., Banerjee, U., and Sobti, R. (2000), J. Ind. Microbiol. Biotechnol 24, 58–63.

    Article  CAS  Google Scholar 

  23. Gonnet, F., Lemaître, G., Waksman, G., and Tortajada, J. (2003), Proteome Sci. 1, 2.

    Article  Google Scholar 

  24. Perkins, D., Pappin, D., Creasy, D., and Cottrell, J. (1999), Electrophoresis 20, 3551–3567.

    Article  CAS  Google Scholar 

  25. Espinoza, P., Barzana, E., Garcia-Garibay, M., and Gomez-Ruiz, L. (1992), Biotechnol. Lett. 14, 1053–1058.

    Article  CAS  Google Scholar 

  26. Caballero R., Olguin, P., Cruz-Guerrero, A., Garcia-Garibay, M., and Gomez-Ruiz, L. (1995), Food Res. Int. 28, 37–41.

    Article  CAS  Google Scholar 

  27. Uwajima, T., Yagi, H., and Terada, O. (1972), Agric. Biol. Chem. 36, 570–577.

    CAS  Google Scholar 

  28. Biermann, L. and Glantz, M. (1968), Biochim. Biophys. Acta 167, 373–377.

    CAS  Google Scholar 

  29. Becerra, M., Cerdan, E., and Siso, G. (1998), Biol. Procedures Online 1, 48–58.

    Article  Google Scholar 

  30. de Macias, M., Manca de Nadra, M., Strasser de Saad, A., Pesce de Ruiz Holgado, A., and Oliver, G. (1983), J. Appl. Biochem. 5, 275–281.

    Google Scholar 

  31. Adams, R., Yoast, S., Mainzer, S., et al. (1994), J. Biol. Chem. 8, 5666–5672.

    Google Scholar 

  32. Greenberg, N. and Mahoney, R. (1981), Process Biochem. 16, 2–8.

    CAS  Google Scholar 

  33. Wendorff, W. and Amundson, C. (1971), J. Milk Food Technol. 34, 300–306.

    CAS  Google Scholar 

  34. Davenport, H. (1982), Physiology of the Digestive Tract, 5th ed. Physiology textbook series, Year Book Medical Publishers, Chicago.

    Google Scholar 

  35. Morgavi, D., Beauchemin, K., Nsereko, V. et al. (2001), J. Anim. Sci. 79, 1621–1630.

    CAS  Google Scholar 

  36. Eriksson, K. and Petterson, D. (1982), Eur. J. Biochem. 124, 635–642.

    Article  CAS  Google Scholar 

  37. Chen, H. and Grethlein, H. (1988), Biotechnol. Lett. 19, 913–918.

    Article  Google Scholar 

  38. Jimenez-Guzman, J., Cruz-Guerrero, A., Rodriguez-Serrano, G., Lopez-Munguia, A., Gomez-Ruiz, L., and Garcia-Garibay, M. (2002), J. Dairy Sci. 85, 2497–2502.

    Article  CAS  Google Scholar 

  39. Santos, A., Ladero, M., and Garcia-Ochoa, F. (1998), Enzyme Microb. Technol. 22, 558–567.

    Article  CAS  Google Scholar 

  40. Ohtsu, N., Motoshima, H., Goto, K., Tsukasaki, F., and Matsuzawa, H. (1998), Biosci. Biotechnol. Biochem. 62, 1539–1545.

    Article  CAS  Google Scholar 

  41. Jurado, E., Camacho, F., Luzon, G., and Vicaria, J. (2002), Enzyme Microb. Technol. 31, 300–309.

    Article  CAS  Google Scholar 

  42. Ladero, M., Santos, A., Garcia, J., Carrascosa, A., Pessela, B., and Garcia-Ochoa, F. (2002), Enzyme Microb. Technol. 30, 392–405.

    Article  CAS  Google Scholar 

  43. Kim, C., Ji, E., and Oh, D. (2004), B.B.R.C. 316, 738–743.

    CAS  Google Scholar 

  44. Cortes, G., Trujillo-Roldan, M., Ramirez, O., and Galindo, E. (2005), Process Biochem. 40, 773–778.

    Article  CAS  Google Scholar 

  45. Furlan, S., Schneider, A., Merkle, R., Carvalho-Jonas, M., and Jonas, R. (2001), Acta Biotechnol. 21, 57–64.

    Article  CAS  Google Scholar 

  46. Rajoka, M., Khan, S., and Shahid, R. (2003), Food Technol. Biotechnol. 41, 315–320.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connell, S., Walsh, G. Purification and properties of a β-galactosidase with potential application as a digestive supplement. Appl Biochem Biotechnol 141, 1–13 (2007). https://doi.org/10.1007/s12010-007-9206-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9206-4

Index Entries

Navigation